論文の概要: Vibe Learning: Education in the age of AI
- arxiv url: http://arxiv.org/abs/2511.01956v1
- Date: Mon, 03 Nov 2025 16:47:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 18:47:05.613072
- Title: Vibe Learning: Education in the age of AI
- Title(参考訳): バイブラーニング:AI時代の教育
- Authors: Marcos Florencio, Francielle Prieto,
- Abstract要約: 我々は、現在のAIシステムの根本的な原因は、既存の方法では解決できないと論じる。
我々は、AIツールに対する人間の知能の長期的な優位性を維持するために、教育を変革するための建設主義的パラダイムの方向性を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The debate over whether "thinking machines" could replace human intellectual labor has existed in both public and expert discussions since the mid-twentieth century, when the concept and terminology of Artificial Intelligence (AI) first emerged. For decades, this idea remained largely theoretical. However, with the recent advent of Generative AI - particularly Large Language Models (LLMs) - and the widespread adoption of tools such as ChatGPT, the issue has become a practical reality. Many fields that rely on human intellectual effort are now being reshaped by AI tools that both expand human capabilities and challenge the necessity of certain forms of work once deemed uniquely human but now easily automated. Education, somewhat unexpectedly, faces a pivotal responsibility: to devise long-term strategies for cultivating human skills that will remain relevant in an era of pervasive AI in the intellectual domain. In this context, we identify the limitations of current AI systems - especially those rooted in LLM technology - argue that the fundamental causes of these weaknesses cannot be resolved through existing methods, and propose directions within the constructivist paradigm for transforming education to preserve the long-term advantages of human intelligence over AI tools.
- Abstract(参考訳): 思考機械」が人間の知的労働に取って代わるかどうかという議論は、人工知能(AI)の概念と用語が最初に登場した20世紀中頃から、公然と専門家の議論に存在してきた。
何十年もの間、この考えは理論的なままであった。
しかし、最近のジェネレーティブAI(特にLarge Language Models (LLMs))の出現と、ChatGPTのようなツールの普及により、この問題は現実的なものになっている。
人間の知的努力に依存している多くの分野は、現在、人間の能力を拡大し、ある種類の仕事の必要性に挑戦するAIツールによって形を変えられている。
教育とは、知的領域におけるAIの普及の時代において、人間スキルを育成するための長期的な戦略を考案することである。
この文脈では、現在のAIシステム(特にLLM技術に根ざしたもの)の限界を識別し、これらの弱点の根本的な原因は既存の手法では解決できないと主張し、AIツールよりも人間の知能の長期的な優位性を維持するために教育を変革するための構成主義パラダイム内の方向性を提案する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
私は、AIのツールとしての狭義の概念化に挑戦し、AIの代替概念化の重要性を主張します。
人工知能と人工情報処理の違いを強調し、AIが人間の学習を理解するための道具としても役立つことを実証する。
本稿では、人間の認知の外部化、人間のメンタルモデルに影響を与えるAIモデルの内部化、密結合された人間とAIハイブリッドインテリジェンスシステムによる人間の認知の拡張という、AIのユニークな概念化について述べる。
論文 参考訳(メタデータ) (2024-03-24T10:07:46Z) - Brain-inspired Computational Intelligence via Predictive Coding [73.42407863671565]
予測符号化(PC)は、機械学習コミュニティにとって潜在的に価値のある、有望な特性を示している。
PCライクなアルゴリズムは、機械学習とAIの複数のサブフィールドに存在し始めている。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。