論文の概要: A Probabilistic U-Net Approach to Downscaling Climate Simulations
- arxiv url: http://arxiv.org/abs/2511.03197v1
- Date: Wed, 05 Nov 2025 05:32:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-06 18:19:32.338285
- Title: A Probabilistic U-Net Approach to Downscaling Climate Simulations
- Title(参考訳): ダウンスケーリング気候シミュレーションのための確率的U-Netアプローチ
- Authors: Maryam Alipourhajiagha, Pierre-Louis Lemaire, Youssef Diouane, Julie Carreau,
- Abstract要約: 我々は,行列性のあるU-Netバックボーンを可変遅延空間に適応させ,アレタリック不確かさを捉える。
AfCRPSとWMSE-MS-SSIMの4つのトレーニング目標を,降水量と温度を3つの設定で評価した。
我々の主な発見は、WMSE-MS-SSIMは特定の条件下では極端に良好に機能するのに対し、afCRPSはスケールの空間的変動をよりよく捉えている。
- 参考スコア(独自算出の注目度): 0.34998703934432673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate models are limited by heavy computational costs, often producing outputs at coarse spatial resolutions, while many climate change impact studies require finer scales. Statistical downscaling bridges this gap, and we adapt the probabilistic U-Net for this task, combining a deterministic U-Net backbone with a variational latent space to capture aleatoric uncertainty. We evaluate four training objectives, afCRPS and WMSE-MS-SSIM with three settings for downscaling precipitation and temperature from $16\times$ coarser resolution. Our main finding is that WMSE-MS-SSIM performs well for extremes under certain settings, whereas afCRPS better captures spatial variability across scales.
- Abstract(参考訳): 気候モデルは重い計算コストによって制限され、しばしば粗い空間分解能で出力を生成するが、多くの気候変動の影響研究はより微細なスケールを必要とする。
統計的ダウンスケーリングはこのギャップを埋め、このタスクに対して確率的U-Netを適応させ、決定論的U-Netバックボーンと変分潜在空間を組み合わせてアレタリック不確実性を捉える。
AfCRPS と WMSE-MS-SSIM の4つのトレーニング目標を,降水量と温度を116\times$ coarser resolution から3つの設定で評価した。
我々の主な発見は、WMSE-MS-SSIMは特定の条件下では極端に良好に機能するのに対し、afCRPSはスケールの空間的変動をよりよく捉えている。
関連論文リスト
- Bayesian Models for Joint Selection of Features and Auto-Regressive Lags: Theory and Applications in Environmental and Financial Forecasting [0.9208007322096533]
自動相関誤差を伴う線形回帰における変数選択のためのベイズ的フレームワークを開発する。
本フレームワークは,MSPEの低減,真のモデル成分同定の改善,自動相関ノイズとの整合性の向上を実現している。
既存の手法と比較して,本フレームワークはより低いMSPEを実現し,真のモデル成分の同定が向上し,自動相関ノイズとの整合性が向上する。
論文 参考訳(メタデータ) (2025-08-12T18:44:36Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Capturing Climatic Variability: Using Deep Learning for Stochastic Downscaling [0.0]
気候変動に適応するには、正確な局地的な気候情報が必要である。
ダウンスケーリング中の変動のキャプチャは、不確実性を推定し、極端な事象を特徴づけるのに不可欠である。
本稿では,GANのキャリブレーションを3つの方法で改善する手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T03:04:10Z) - Towards replacing precipitation ensemble predictions systems using
machine learning [0.0]
本研究では,高分解能降水に対するアンサンブル気象予測のための新しい手法を提案する。
本手法は,複雑な降水パターンを学習するために生成的対向ネットワークを用いる。
本研究では, 未確認高解像度の降水アンサンブル部材の現実的な生成の可能性を示す。
論文 参考訳(メタデータ) (2023-04-20T12:20:35Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。