論文の概要: Uncertainty Quantification for Reduced-Order Surrogate Models Applied to Cloud Microphysics
- arxiv url: http://arxiv.org/abs/2511.04534v1
- Date: Thu, 06 Nov 2025 16:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.509855
- Title: Uncertainty Quantification for Reduced-Order Surrogate Models Applied to Cloud Microphysics
- Title(参考訳): 雲マイクロ物理に応用した低次サロゲートモデルの不確かさの定量化
- Authors: Jonas E. Katona, Emily K. de Jong, Nipun Gunawardena,
- Abstract要約: 還元次モデル (ROM) は高次元物理系を効率的にシミュレートできるが、堅牢な不確実性定量法は欠如している。
本稿では,潜在空間ROMにおける予測不確実性定量化のためのモデルに依存しないフレームワークを提案する。
本手法は,液滴サイズ分布の進化を正確に予測するクラウドマイクロ物理の潜在空間力学モデル上で実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reduced-order models (ROMs) can efficiently simulate high-dimensional physical systems, but lack robust uncertainty quantification methods. Existing approaches are frequently architecture- or training-specific, which limits flexibility and generalization. We introduce a post hoc, model-agnostic framework for predictive uncertainty quantification in latent space ROMs that requires no modification to the underlying architecture or training procedure. Using conformal prediction, our approach estimates statistical prediction intervals for multiple components of the ROM pipeline: latent dynamics, reconstruction, and end-to-end predictions. We demonstrate the method on a latent space dynamical model for cloud microphysics, where it accurately predicts the evolution of droplet-size distributions and quantifies uncertainty across the ROM pipeline.
- Abstract(参考訳): 還元次モデル (ROM) は高次元物理系を効率的にシミュレートできるが、堅牢な不確実性定量法は欠如している。
既存のアプローチは、しばしばアーキテクチャやトレーニング固有のもので、柔軟性と一般化を制限している。
本稿では,潜在空間ROMにおける予測不確実性定量化のためのポストホック・モデル非依存フレームワークを提案する。
提案手法は共形予測を用いて,ROMパイプラインの複数成分の統計的予測間隔を推定する。
本手法は, 雲微小物理の潜時空間力学モデルを用いて, 液滴径分布の進化を正確に予測し, ROMパイプライン間の不確かさを定量化する手法である。
関連論文リスト
- BLIPs: Bayesian Learned Interatomic Potentials [47.73617239750485]
機械学習原子間ポテンシャル(MLIP)は、シミュレーションベースの化学の中心的なツールになりつつある。
MLIPは、アクティブな学習パイプラインをガイドする基本となる、構築による不確実性推定を提供していない。
BLIPはスケーラブルでアーキテクチャに依存しない、トレーニングや微調整のためのベイズ的フレームワークである。
論文 参考訳(メタデータ) (2025-08-19T17:28:14Z) - Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models [0.0]
非線形力学系における学習,非局所的クロージャモデル,法則を学習するための潜在スコアベース生成AIフレームワークを提案する。
この研究は、明確なスケール分離なしに複雑なマルチスケール力学系をモデル化する重要な課題に対処する。
論文 参考訳(メタデータ) (2025-06-25T19:04:02Z) - Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
Eucidated Rolling Diffusion Models (ERDM)を紹介する。
ERDMはEucidated Diffusion Models (EDM) の原理的, 性能的設計とローリング予測構造を統一する最初のフレームワークである
2D Navier-StokesシミュレーションとERA5グローバル気象予報の1.5円解像度では、ERDMはキー拡散ベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2025-06-24T21:44:31Z) - Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models [11.308331231957588]
本研究は, 拡散モデルを用いた高速道路軌道予測のための新しいネットワークアーキテクチャである, 条件付き車両運動拡散(cVMD)モデルを紹介する。
cVMDのアーキテクチャの中心は、安全クリティカルなアプリケーションにおいて重要な機能である不確実な定量化を実行する能力である。
実験により,提案アーキテクチャは最先端モデルと比較して,競合軌道予測精度が向上することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:01:39Z) - Conformalized Multimodal Uncertainty Regression and Reasoning [0.9205582989348333]
本稿では,マルチモーダル(不連続)不確実性境界を予測できる軽量不確実性推定器を提案する。
本稿では,空飛ぶ領域対称性などの環境特性が多モード不確実性をもたらす視覚計測(VO)への応用について論じる。
論文 参考訳(メタデータ) (2023-09-20T02:40:59Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Last layer state space model for representation learning and uncertainty
quantification [0.0]
本稿では,低次元状態を学ぶための表現学習段階と,不確実性推定のための状態空間モデルという2つのステップで分類・回帰タスクを分解することを提案する。
我々は、状態空間をベースとした最後の層を追加することで、既存のトレーニング済みニューラルネットワーク上に予測分布を推定する方法を実証する。
我々のモデルは、未知あるいは不利用可能な変数のため、ノイズの多いデータ構造を考慮し、予測に対して信頼区間を提供することができる。
論文 参考訳(メタデータ) (2023-07-04T08:37:37Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。