論文の概要: Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
- arxiv url: http://arxiv.org/abs/2511.04584v1
- Date: Thu, 06 Nov 2025 17:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.537881
- Title: Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
- Title(参考訳): 質問は正しいのか? : 語彙データ分析のための自然言語クエリのあいまいさについて
- Authors: Daniel Gomm, Cornelius Wolff, Madelon Hulsebos,
- Abstract要約: 我々は、協調的なクエリ、すなわち、解決可能な解釈をもたらすクエリを区別する原則的なフレームワークを開発する。
クエリを15の一般的なデータセットで分析し、制御不能なクエリ型の混合を観察する。
- 参考スコア(独自算出の注目度): 2.905751301655124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language interfaces to tabular data must handle ambiguities inherent to queries. Instead of treating ambiguity as a deficiency, we reframe it as a feature of cooperative interaction, where the responsibility of query specification is shared among the user and the system. We develop a principled framework distinguishing cooperative queries, i.e., queries that yield a resolvable interpretation, from uncooperative queries that cannot be resolved. Applying the framework to evaluations for tabular question answering and analysis, we analyze the queries in 15 popular datasets, and observe an uncontrolled mixing of query types neither adequate for evaluating a system's execution accuracy nor for evaluating interpretation capabilities. Our framework and analysis of queries shifts the perspective from fixing ambiguity to embracing cooperation in resolving queries. This reflection enables more informed design and evaluation for natural language interfaces for tabular data, for which we outline implications and directions for future research.
- Abstract(参考訳): 表形式のデータに対する自然言語インターフェースは、クエリ固有のあいまいさを処理しなければなりません。
あいまいさを欠如として扱う代わりに、ユーザとシステム間でクエリ仕様の責任が共有される協調インタラクションの機能として再編成する。
我々は、協調的なクエリ、すなわち解決不可能な非協調的なクエリから解決可能な解釈をもたらすクエリを区別する原則的なフレームワークを開発する。
このフレームワークを表形式の質問応答と分析の評価に適用し、15の一般的なデータセットでクエリを分析し、システムの実行精度や解釈能力を評価するのに適さない、制御されていないクエリタイプの混合を観察する。
問合せの枠組みと分析は、あいまいさの修正から、問合せの解決における協調の受け入れへと視点を転換する。
このリフレクションにより、表形式のデータに対する自然言語インタフェースの設計と評価がより深められ、今後の研究の意図と方向性を概説する。
関連論文リスト
- Reasoning-enhanced Query Understanding through Decomposition and Interpretation [87.56450566014625]
ReDIは、分解と解釈によるクエリ理解のための推論強化アプローチである。
我々は,大規模検索エンジンから実世界の複雑なクエリの大規模データセットをコンパイルした。
BRIGHT と BEIR の実験により、ReDI はスパースと密度の高い検索パラダイムの両方において、強いベースラインを一貫して超えることを示した。
論文 参考訳(メタデータ) (2025-09-08T10:58:42Z) - CLEAR-KGQA: Clarification-Enhanced Ambiguity Resolution for Knowledge Graph Question Answering [13.624962763072899]
KGQAシステムは通常、ユーザクエリは曖昧であると仮定するが、これは現実世界のアプリケーションではめったに行われない仮定である。
本稿では,対話的明確化を通じて,エンティティのあいまいさ(類似した名前を持つエンティティの区別など)と意図のあいまいさ(ユーザクエリの異なる解釈を明確にするなど)を動的に扱う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-13T17:34:35Z) - Contextualized Evaluations: Judging Language Model Responses to Underspecified Queries [85.81295563405433]
本稿では,不特定クエリを取り巻くコンテキストを合成的に構築し,評価中にそれを提供するプロトコルを提案する。
その結果,1) 評価から得られた結論の変更,2) モデルペア間のベンチマークランキングの反転,2) スタイルのような表面レベルの基準に基づいて判断を下すナッジ評価,3) 多様なコンテキスト間でのモデル行動に関する新たな洞察の提供,などが確認できた。
論文 参考訳(メタデータ) (2024-11-11T18:58:38Z) - AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries [56.82807063333088]
我々は,新たなベンチマークであるAMBROSIAを導入し,テキスト・ツー・オープン・プログラムの開発を促進することを期待する。
私たちのデータセットには、3種類のあいまいさ(スコープのあいまいさ、アタッチメントのあいまいさ、あいまいさ)を示す質問が含まれている。
いずれの場合も、データベースのコンテキストが提供されてもあいまいさは持続する。
これは、スクラッチからデータベースを制御して生成する、新しいアプローチによって実現される。
論文 参考訳(メタデータ) (2024-06-27T10:43:04Z) - Searching for Better Database Queries in the Outputs of Semantic Parsers [16.221439565760058]
本稿では,テスト時に生成したクエリを評価する外部基準にアクセスできる場合を考える。
クエリがエラーなしに実行されることをチェックすることから、一連のテストでクエリを検証することまで、その基準は様々である。
我々は、最先端のセマンティクスにアプローチを適用し、異なるデータセットですべてのテストを通過する多くのクエリを見つけることができると報告します。
論文 参考訳(メタデータ) (2022-10-13T17:20:45Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
論文 参考訳(メタデータ) (2020-04-06T22:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。