論文の概要: Adversarially Robust Multitask Adaptive Control
- arxiv url: http://arxiv.org/abs/2511.05444v1
- Date: Fri, 07 Nov 2025 17:25:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.849153
- Title: Adversarially Robust Multitask Adaptive Control
- Title(参考訳): 逆ロバストなマルチタスク適応制御
- Authors: Kasra Fallah, Leonardo F. Toso, James Anderson,
- Abstract要約: 本稿では, 対角的ロバストなマルチタスク適応線形二次制御について検討する。
本稿では,クラスタリングとシステム識別とレジリエントアグリゲーションを統合したクラスタ化マルチタスク手法を提案する。
- 参考スコア(独自算出の注目度): 6.576173998482649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
- Abstract(参考訳): 複数のシステムがモデル不確実性と逆の汚職の下で協調的に制御ポリシーを学習する環境で、逆向きに頑健なマルチタスク適応線形二次制御について検討する。
本稿では,クラスタリングとシステム識別とレジリエントアグリゲーションを統合したクラスタ化マルチタスク手法を提案する。
クラスタリング精度,クラスタ内不均一性,および対向行動が,LQRタスク間でのCE制御の期待された後悔にどのように影響するかを解析した。
非漸近的境界を定め, 後悔はクラスタ当たりの正直な系数と逆向きに減少し, この減少は各クラスタ内の敵系の有界な数で維持されることを示す。
関連論文リスト
- Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
オフライン協調型マルチエージェント強化学習(MARL)は、分散シフトによる固有の課題に直面している。
この作業は、オフラインとオンラインのMARL間の分散ギャップを明示的に解決する最初の作業である。
論文 参考訳(メタデータ) (2025-05-09T11:42:31Z) - BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
フェデレーテッド・ラーニングは、その分散した性質のため、毒殺の被害を受けやすい。
本稿では,この問題を解決するために,分布認識型異常検出機構であるBoBaを提案する。
論文 参考訳(メタデータ) (2024-07-12T19:38:42Z) - Decentralized Event-Triggered Online Learning for Safe Consensus of
Multi-Agent Systems with Gaussian Process Regression [3.405252606286664]
本稿では,補助力学によって強化された,学習に基づく分散制御法を提案する。
予測性能を継続的に向上するために、分散イベントトリガー機構を備えたデータ効率の高いオンライン学習戦略を提案する。
提案手法の有効性を示すため,従来の分散制御法とオフライン学習法を対比して比較分析を行った。
論文 参考訳(メタデータ) (2024-02-05T16:41:17Z) - End-to-end Differentiable Clustering with Associative Memories [23.618514621460694]
クラスタリングは、集中的な離散最適化問題を含む、広く使われている教師なし学習手法である。
本稿では,離散クラスタリング問題の非拘束的連続緩和を提案し,ClAMと呼ばれるAMによるエンドツーエンドの微分可能なクラスタリングを実現する。
各種データセットに対する評価では、ClAMは自己スーパービジョンの恩恵を受けており、従来のロイドのk平均アルゴリズムと、より最近の連続的なクラスタリング緩和(シルエット係数の60%まで)の両方で大幅に改善されていることが示されている。
論文 参考訳(メタデータ) (2023-06-05T19:34:36Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling [19.532602887109668]
教師なし人物再識別(Re-ID)は、教師付きRe-IDモデルのスケーラビリティ問題を解決する可能性から注目されている。
既存の教師なし手法の多くは反復的なクラスタリング機構を採用しており、教師なしクラスタリングによって生成された擬似ラベルに基づいてネットワークを訓練している。
高品質な擬似ラベルを生成し,クラスタリングエラーの影響を軽減するために,教師なしのRe-IDのための新しいクラスタリング関係モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-03T10:55:07Z) - Hybrid Dynamic Contrast and Probability Distillation for Unsupervised
Person Re-Id [109.1730454118532]
非監督的人物再識別(Re-Id)は、リードワールドビデオ監視システムにおける実践的応用により注目されている。
本稿では,ハイブリッド動的クラスタコントラストと確率蒸留アルゴリズムを提案する。
教師なしRe-Id問題を局所-言語的ダイナミックコントラスト学習と自己教師付き確率蒸留の枠組みに統合する。
論文 参考訳(メタデータ) (2021-09-29T02:56:45Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。