論文の概要: TOPSIS-like metaheuristic for LABS problem
- arxiv url: http://arxiv.org/abs/2511.05778v1
- Date: Sat, 08 Nov 2025 00:47:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.575191
- Title: TOPSIS-like metaheuristic for LABS problem
- Title(参考訳): LABS問題に対するTOPSIS様メタヒューリスティック
- Authors: Aleksandra Urbańczyk, Bogumiła Papiernik, Piotr Magiera, Piotr Urbańczyk, Aleksander Byrski,
- Abstract要約: 最良解に従う戦略と最悪の解を避ける戦略を統合する社会認知突然変異機構を導入する。
探索エージェントにハイパフォーマンスなソリューションを模倣し、貧弱なソリューションを避けるよう誘導することにより、これらの演算子は解の多様性と収束効率の両方を高める。
- 参考スコア(独自算出の注目度): 70.49434432747293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the application of socio-cognitive mutation operators inspired by the TOPSIS method to the Low Autocorrelation Binary Sequence (LABS) problem. Traditional evolutionary algorithms, while effective, often suffer from premature convergence and poor exploration-exploitation balance. To address these challenges, we introduce socio-cognitive mutation mechanisms that integrate strategies of following the best solutions and avoiding the worst. By guiding search agents to imitate high-performing solutions and avoid poor ones, these operators enhance both solution diversity and convergence efficiency. Experimental results demonstrate that TOPSIS-inspired mutation outperforms the base algorithm in optimizing LABS sequences. The study highlights the potential of socio-cognitive learning principles in evolutionary computation and suggests directions for further refinement.
- Abstract(参考訳): 本稿では,TOPSIS法にインスパイアされた社会認知突然変異演算子の低自己相関結合配列(LABS)問題への適用について述べる。
伝統的な進化的アルゴリズムは効果があるが、しばしば早めの収束と探検と探査のバランスの悪化に悩まされる。
これらの課題に対処するために,ベストソリューションを追求し,最悪の事態を避けるための戦略を統合する,社会認知突然変異機構を導入する。
探索エージェントにハイパフォーマンスなソリューションを模倣し、貧弱なソリューションを避けるよう誘導することにより、これらの演算子は解の多様性と収束効率の両方を高める。
実験結果から,TOPSISによる変異はLABS配列の最適化において基本アルゴリズムよりも優れていることが示された。
この研究は、進化的計算における社会認知学習の原則の可能性を強調し、さらなる洗練に向けた方向性を提案する。
関連論文リスト
- Socio-cognitive agent-oriented evolutionary algorithm with trust-based optimization [70.49434432747293]
信頼に基づく最適化(TBO)は、従来の周期的移行を信頼や評価に基づく柔軟なエージェント駆動の相互作用メカニズムに置き換える進化計算における島モデルの新たな拡張である。
実験の結果、TBOは様々な最適化問題において標準島モデル進化アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2025-10-29T01:59:26Z) - Synergizing Reinforcement Learning and Genetic Algorithms for Neural Combinatorial Optimization [25.633698252033756]
本稿では,DRLの学習効率をGAのグローバル検索能力と相乗化するための進化的拡張機構を提案する。
EAMは、学習されたポリシーからソリューションを生成し、クロスオーバーや突然変異といったドメイン固有の遺伝子操作によってそれらを精製することで機能する。
EAMは、アテンションモデル、POMO、SymNCOのような最先端のDRLソルバとシームレスに統合できる。
論文 参考訳(メタデータ) (2025-06-11T05:17:30Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
強化学習(Reinforcement Learning, RL)は、ニューラルネットワーク最適化のための強力なツールとして登場した。
大幅な進歩にもかかわらず、既存のRLアプローチは報酬信号の減少や大規模な行動空間における非効率な探索といった課題に直面している。
統計的比較モデルを用いて定量的報酬信号を定性的選好信号に変換する新しい手法であるPreference Optimizationを提案する。
論文 参考訳(メタデータ) (2025-05-13T16:47:00Z) - Learning Strategies in Particle Swarm Optimizer: A Critical Review and Performance Analysis [0.6437284704257459]
素粒子群最適化(PSO)はその単純さと効率性からSIアルゴリズムに広く採用されている。
我々は、このギャップに対処するために様々な学習戦略をレビューし、分類し、最適化性能への影響を評価した。
我々は、自己適応的でインテリジェントなPSO変種の必要性を強調し、オープンな課題と今後の方向性について議論する。
論文 参考訳(メタデータ) (2025-04-16T06:50:02Z) - Un-evaluated Solutions May Be Valuable in Expensive Optimization [5.6787965501364335]
本稿では,選択段階における代理モデルによって予測される高品質で未評価なソリューションを取り入れた戦略的アプローチを提案する。
このアプローチは評価された解の分布を改善することを目的としており、それによってより優れた次世代の解を生成する。
論文 参考訳(メタデータ) (2024-12-05T04:06:30Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。