論文の概要: Learning Strategies in Particle Swarm Optimizer: A Critical Review and Performance Analysis
- arxiv url: http://arxiv.org/abs/2504.11812v1
- Date: Wed, 16 Apr 2025 06:50:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:52.391589
- Title: Learning Strategies in Particle Swarm Optimizer: A Critical Review and Performance Analysis
- Title(参考訳): Particle Swarm Optimizerにおける学習戦略: 批判的レビューと性能分析
- Authors: Dikshit Chauhan, Shivani, P. N. Suganthan,
- Abstract要約: 素粒子群最適化(PSO)はその単純さと効率性からSIアルゴリズムに広く採用されている。
我々は、このギャップに対処するために様々な学習戦略をレビューし、分類し、最適化性能への影響を評価した。
我々は、自己適応的でインテリジェントなPSO変種の必要性を強調し、オープンな課題と今後の方向性について議論する。
- 参考スコア(独自算出の注目度): 0.6437284704257459
- License:
- Abstract: Nature has long inspired the development of swarm intelligence (SI), a key branch of artificial intelligence that models collective behaviors observed in biological systems for solving complex optimization problems. Particle swarm optimization (PSO) is widely adopted among SI algorithms due to its simplicity and efficiency. Despite numerous learning strategies proposed to enhance PSO's performance in terms of convergence speed, robustness, and adaptability, no comprehensive and systematic analysis of these strategies exists. We review and classify various learning strategies to address this gap, assessing their impact on optimization performance. Additionally, a comparative experimental evaluation is conducted to examine how these strategies influence PSO's search dynamics. Finally, we discuss open challenges and future directions, emphasizing the need for self-adaptive, intelligent PSO variants capable of addressing increasingly complex real-world problems.
- Abstract(参考訳): 自然は長い間、複雑な最適化問題を解決するために生物学的システムで観察された集合的な振る舞いをモデル化する人工知能のキーブランチであるスウォーム・インテリジェンス(SI)の開発にインスピレーションを与えてきた。
素粒子群最適化(PSO)はその単純さと効率性からSIアルゴリズムに広く採用されている。
収束速度、堅牢性、適応性の観点からPSOの性能を高めるための多くの学習戦略が提案されているが、これらの戦略の包括的かつ体系的な分析は存在しない。
我々は、このギャップに対処するために様々な学習戦略をレビューし、分類し、最適化性能への影響を評価した。
さらに,これらの戦略がPSOの探索力学に与える影響について比較実験を行った。
最後に、より複雑な現実世界の問題に対処できる自己適応的でインテリジェントなPSOバリアントの必要性を強調し、オープンな課題と今後の方向性について議論する。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Boosting the Efficiency of Metaheuristics Through Opposition-Based Learning in Optimum Locating of Control Systems in Tall Buildings [0.0]
対位法に基づく学習はメタヒューリスティックアルゴリズムの性能向上に有効な手法である。
工学的問題への反対戦略の適用に関する事例研究を行う。
論文 参考訳(メタデータ) (2024-11-07T13:05:40Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - Orthogonally Initiated Particle Swarm Optimization with Advanced Mutation for Real-Parameter Optimization [0.04096453902709291]
本稿では,多角形PSO(orthogonal PSO with Mutation,OPSO-m)と呼ばれる拡張粒子群(PSO)を紹介する。
PSOのための改良された初期Swarmを育むための配列ベースの学習手法を提案し、Swarmベースの最適化アルゴリズムの適応性を大幅に向上させた。
この記事はさらに、人口を正規グループとエリートグループに分割する、アーカイブベースの自己適応学習戦略を提示する。
論文 参考訳(メタデータ) (2024-05-21T07:16:20Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
マルチモーダル最適化問題 (MMOP) は, 限られた関数評価において困難となる最適解の探索を必要とする。
本稿では,メタブラックボックス最適化フレームワークであるRLEMMOを提案する。
品質と多様性の両方を促進する新しい報酬メカニズムにより、RLEMMOはポリシー勾配アルゴリズムを用いて効果的に訓練できる。
論文 参考訳(メタデータ) (2024-04-12T05:02:49Z) - Gradient Based Hybridization of PSO [1.1059341532498634]
Particle Swarm Optimization (PSO) は、過去30年間にわたって、強力なメタヒューリスティックなグローバル最適化アプローチとして現れてきた。
PSOは、単一目的シナリオにおける早期の停滞や、探索と搾取のバランスを取る必要性といった課題に直面している。
多様なパラダイムから確立された最適化手法と協調的な性質を統合することでPSOをハイブリダイズすることは、有望な解決策となる。
論文 参考訳(メタデータ) (2023-12-15T11:26:36Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Simulation-guided Beam Search for Neural Combinatorial Optimization [13.072343634530883]
ニューラル最適化問題に対するシミュレーション誘導ビームサーチ(SGBS)を提案する。
我々は、SGBSと効率的なアクティブサーチ(EAS)を併用し、SGBSはEASでバックプロパゲーションされたソリューションの品質を高める。
提案手法をよく知られたCOベンチマークで評価し,SGBSが合理的な仮定で得られた解の質を著しく向上することを示す。
論文 参考訳(メタデータ) (2022-07-13T13:34:35Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。