論文の概要: Referring Expressions as a Lens into Spatial Language Grounding in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2511.06146v1
- Date: Sat, 08 Nov 2025 21:43:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.779156
- Title: Referring Expressions as a Lens into Spatial Language Grounding in Vision-Language Models
- Title(参考訳): 視覚言語モデルにおける空間言語接地へのレンズとしての表現の参照
- Authors: Akshar Tumu, Varad Shinde, Parisa Kordjamshidi,
- Abstract要約: 視覚言語モデル(VLM)による空間推論評価のためのプラットフォームとして参照表現タスクを提案する。
このプラットフォームは,1)対象検出の曖昧さ,2)より長い文構造と複数の空間関係を持つ複雑な空間表現,3)否定を伴う表現("not")について,空間的理解と接地能力のより深い分析を行う機会を提供する。
本研究は,これらの課題と行動に注目し,研究のギャップと今後の方向性について考察する。
- 参考スコア(独自算出の注目度): 22.672848927658958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial Reasoning is an important component of human cognition and is an area in which the latest Vision-language models (VLMs) show signs of difficulty. The current analysis works use image captioning tasks and visual question answering. In this work, we propose using the Referring Expression Comprehension task instead as a platform for the evaluation of spatial reasoning by VLMs. This platform provides the opportunity for a deeper analysis of spatial comprehension and grounding abilities when there is 1) ambiguity in object detection, 2) complex spatial expressions with a longer sentence structure and multiple spatial relations, and 3) expressions with negation ('not'). In our analysis, we use task-specific architectures as well as large VLMs and highlight their strengths and weaknesses in dealing with these specific situations. While all these models face challenges with the task at hand, the relative behaviors depend on the underlying models and the specific categories of spatial semantics (topological, directional, proximal, etc.). Our results highlight these challenges and behaviors and provide insight into research gaps and future directions.
- Abstract(参考訳): 空間推論は人間の認知の重要な構成要素であり、最新の視覚言語モデル(VLM)が困難を示す領域である。
現在の分析では、画像キャプションタスクと視覚的質問応答が使われている。
本稿では,VLMによる空間的推論評価のためのプラットフォームとして,参照表現理解タスクを提案する。
このプラットフォームは、空間的理解と接地能力をより深く分析する機会を提供する。
1)対象検出の曖昧さ
2)より長い文構造と複数空間関係を持つ複雑な空間表現
3) 否定表現('not')。
分析では、タスク固有のアーキテクチャと大きなVLMを使用し、これらの特定の状況に対処する際の長所と短所を強調します。
これらのモデルは全て、タスクの課題に直面しているが、相対的行動は、基礎となるモデルと空間意味論(トポロジカル、指向性、近位性など)の特定のカテゴリに依存している。
本研究は,これらの課題と行動に注目し,研究のギャップと今後の方向性について考察する。
関連論文リスト
- Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks [108.15756345836901]
大規模モデルを用いたマルチモーダル空間推論タスクの包括的レビューを行う。
我々は、視覚言語ナビゲーションやアクションモデルを含む、具体的AIの進歩についてレビューする。
我々は,新しいセンサによる空間的理解に寄与する音声やエゴセントリックビデオなどの新たなモダリティを考察する。
論文 参考訳(メタデータ) (2025-10-29T17:55:43Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [13.768090541138571]
視覚言語モデル(VLM)はオブジェクトの識別と記述に優れるが、しばしば空間的推論では失敗する。
視覚トークンの埋め込みは、テキストトークンよりもはるかに大きな規範を持っている。
視覚トークンとシステムが注目を惹きつけることを明らかにするツール。
論文 参考訳(メタデータ) (2025-03-21T17:51:14Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [69.56484419619919]
機械的解釈可能性のレンズによる空間的推論の課題について検討する。
空間的推論の成功は、実際の物体の位置と注意を一致させるモデルの能力と強く相関している。
本研究の目的は,ADAPTVISを用いて,信頼性の高い地域への注意を喚起することである。
論文 参考訳(メタデータ) (2025-03-03T17:57:03Z) - Exploring Spatial Language Grounding Through Referring Expressions [17.524558622186657]
視覚言語モデル(VLM)による空間推論評価のためのプラットフォームとして参照表現タスクを提案する。
このプラットフォームは,1)対象検出の曖昧さ,2)より長い文構造と複数の空間関係を持つ複雑な空間表現,3)否定を伴う表現("not")について,空間的理解と接地能力のより深い分析を行う機会を提供する。
本研究は,これらの課題と行動に注目し,研究のギャップと今後の方向性について考察する。
論文 参考訳(メタデータ) (2025-02-04T22:58:15Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
画像とテキストとのマッチングを訓練した大規模視覚言語モデル(VLM)では,空間的関係の微妙な理解が欠如していることが示されている。
本稿では,空間的節の認識とランク付けのための,よりきめ細かな構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-18T18:58:54Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - CLEAR: Improving Vision-Language Navigation with Cross-Lingual,
Environment-Agnostic Representations [98.30038910061894]
VLN(Vision-and-Language Navigation)タスクでは、エージェントが言語命令に基づいて環境をナビゲートする必要がある。
CLEAR: 言語横断表現と環境非依存表現を提案する。
我々の言語と視覚表現は、Room-to-Room and Cooperative Vision-and-Dialogue Navigationタスクにうまく転送できる。
論文 参考訳(メタデータ) (2022-07-05T17:38:59Z) - Understanding Spatial Relations through Multiple Modalities [78.07328342973611]
オブジェクト間の空間的関係は、空間的前置詞として表されるか、移動、歩行、移動などの空間的動詞によって表される。
画像中の2つの実体間の暗黙的・明示的な空間的関係を推定するタスクを導入する。
本研究では、テキスト情報と視覚情報の両方を用いて空間関係を予測し、物体の位置情報と大きさ情報と画像埋め込みを利用するモデルを設計する。
論文 参考訳(メタデータ) (2020-07-19T01:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。