論文の概要: Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2503.17349v2
- Date: Wed, 01 Oct 2025 04:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-02 14:33:21.544116
- Title: Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models
- Title(参考訳): セマンティックスを超えて:視覚・言語モデルにおける空間的意識の発見
- Authors: Jianing Qi, Jiawei Liu, Hao Tang, Zhigang Zhu,
- Abstract要約: 視覚言語モデル(VLM)はオブジェクトの識別と記述に優れるが、しばしば空間的推論では失敗する。
視覚トークンの埋め込みは、テキストトークンよりもはるかに大きな規範を持っている。
視覚トークンとシステムが注目を惹きつけることを明らかにするツール。
- 参考スコア(独自算出の注目度): 13.768090541138571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Language Models (VLMs) excel at identifying and describing objects but often fail at spatial reasoning. We study why VLMs, such as LLaVA, underutilize spatial cues despite having positional encodings and spatially rich vision encoder features. Our analysis reveals a key imbalance: vision token embeddings have much larger norms than text tokens, suppressing LLM's position embedding. To expose this mechanism, we developed three interpretability tools: (1) the Position Sensitivity Index, which quantifies reliance on token order, (2) the Cross Modality Balance, which reveals attention head allocation patterns, and (3) a RoPE Sensitivity probe, which measures dependence on rotary positional embeddings. These tools uncover that vision tokens and system prompts dominate attention. We validated our mechanistic understanding through targeted interventions that predictably restore positional sensitivity. These findings reveal previously unknown failure modes in multimodal attention and demonstrate how interpretability analysis can guide principled improvements.
- Abstract(参考訳): 視覚言語モデル(VLM)はオブジェクトの識別と記述に優れるが、しばしば空間的推論では失敗する。
LLaVAのようなVLMは、位置符号化や空間的にリッチな視覚エンコーダ機能があるにもかかわらず、空間的手がかりを欠いている。
視覚トークンの埋め込みは、テキストトークンよりもはるかに大きな規範を持ち、LCMの位置埋め込みを抑える。
このメカニズムを明らかにするために,(1)トークン順序に依存する位置感度指数,(2)注目頭部配置パターンを明らかにするクロスモダリティバランス,(3)回転位置埋め込みに依存するRoPE感度プローブの3つの解釈可能性ツールを開発した。
これらのツールは、視覚トークンとシステムが注意を惹きつけることを明らかにする。
我々は,位置感度を予測的に回復する目的の介入を通じて,機械的理解を検証した。
これらの結果から,マルチモーダルアテンションにおける従来不明な障害モードが明らかとなり,解釈可能性分析が改善の原則をいかに導いてくれるかが示された。
関連論文リスト
- VLM4D: Towards Spatiotemporal Awareness in Vision Language Models [66.833085504228]
V4DLMは視覚言語モデル(VLM)を評価するために設計された最初のベンチマークである。
本ベンチマークは,質問応答対を慎重にキュレートした,多様な実世界および合成ビデオで構成されている。
我々は,既存のモデルにおける基本的欠陥を浮き彫りにして,人間のベースラインと比較して重要なパフォーマンスギャップを識別する。
論文 参考訳(メタデータ) (2025-08-04T06:06:06Z) - Response Wide Shut? Surprising Observations in Basic Vision Language Model Capabilities [54.94982467313341]
視覚言語モデル(VLM)は、様々な複雑なコンピュータビジョン問題に対処するための汎用ツールとして登場した。
我々は、設計のどのコンポーネントが欠落しているかを調査する一連のテストを構築することで、基本的な視覚的タスクにおけるSoTA VLMの限界を理解することにしました。
論文 参考訳(メタデータ) (2025-07-10T15:26:41Z) - Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
空間における推論への描画は、視覚空間における基本的な描画操作を通じてLVLMを推論できる新しいパラダイムである。
我々のモデルはVILASRと呼ばれ、様々な空間推論ベンチマークで既存の手法より一貫して優れています。
論文 参考訳(メタデータ) (2025-06-11T17:41:50Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [47.237216851265316]
視覚言語モデル (VLM) は視覚的内容の理解と推論において顕著な能力を示した。
現在のVLMは、主に自我中心の空間的推論(カメラの観点から)に優れるが、同中心の視点に一般化することができない。
マルチ視点空間位置認識評価に特化して設計された,初の総合的なベンチマークであるViewSpatial-Benchを紹介する。
論文 参考訳(メタデータ) (2025-05-27T17:59:26Z) - Caption This, Reason That: VLMs Caught in the Middle [3.4820139118440676]
VLM(Vision-Language Models)は近年,視覚的理解の進歩を目覚ましいものにしている。
カウントやリレーショナル推論といった視覚的なタスクでは、人間の能力が遅れている。
認識,注意,記憶など,コア認知軸に沿ったVLMのパフォーマンスを解析する。
論文 参考訳(メタデータ) (2025-05-24T14:25:48Z) - Unveiling the Lack of LVLM Robustness to Fundamental Visual Variations: Why and Path Forward [1.7971686967440696]
V$2$R-Benchは、LVLMの視覚変化ロバスト性を評価するためのベンチマークフレームワークである。
本研究では,複雑な視覚言語タスクに優れた高度なモデルが,オブジェクト認識などの単純なタスクでは著しく性能が劣っていることを示す。
これらの脆弱性は、パイプラインアーキテクチャにおけるエラーの蓄積と、マルチモーダルアライメントの不十分に起因する。
論文 参考訳(メタデータ) (2025-04-23T14:01:32Z) - A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [52.478956204238315]
機械的解釈可能性のレンズによる空間的推論の課題について検討する。
空間的推論の成功は、実際の物体の位置と注意を一致させるモデルの能力と強く相関している。
本研究の目的は,ADAPTVISを用いて,信頼性の高い地域への注意を喚起することである。
論文 参考訳(メタデータ) (2025-03-03T17:57:03Z) - SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation [7.659514491338669]
現在の視覚言語モデルは、基本的な空間的手がかりを把握できるが、人間のような理解や現実世界の応用に必要な多次元空間的推論に苦慮している。
我々は,新しい人間注釈付きデータセットをサポートする階層的評価フレームワークであるSPHEREを開発した。
最先端モデルのベンチマーク評価では、特に距離と近接性についての推論において、重大な欠陥が示される。
論文 参考訳(メタデータ) (2024-12-17T09:10:55Z) - Beyond Sight: Towards Cognitive Alignment in LVLM via Enriched Visual Knowledge [24.538839144639653]
LVLM(Large Vision-Language Models)は、学習済みのビジョンと言語コンポーネントを個別に統合する。
これらのモデルはしばしば、視覚エンコーダ(VE)と大言語モデル(LLM)の「認知的不整合」の中核的な問題に遭遇する。
論文 参考訳(メタデータ) (2024-11-25T18:33:14Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
視覚言語モデル (VLM) は、幅広い下流タスクにおいて印象的なパフォーマンスを示している。
ほとんどのタスクは、2次元(2D)環境でのコア空間推論能力に依存している。
本稿では,合成データ生成を用いて視覚言語モデル(VLM)を3つの基本的な空間的能力で監視するフレームワークであるSparkleを紹介する。
論文 参考訳(メタデータ) (2024-10-21T16:26:09Z) - Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models [61.899791071654654]
定量的空間的推論のために設計された5つのカテゴリに271の質問があるベンチマークQ-Spatial Benchを導入する。
本課題における最先端の視覚言語モデル(VLM)の性能について検討する。
本研究では,参照オブジェクトを視覚的手がかりとして,VLMが量的空間的疑問に答えることを奨励するゼロショットプロンプト技術であるSpatialPromptを開発した。
論文 参考訳(メタデータ) (2024-09-15T16:45:42Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
視覚言語モデル(VLM)は、エキサイティングな言語モデル(LM)のクラスである。
VLMの未調査能力の1つは、視覚空間計画である。
本研究は,これらのモデルにおける空間計画能力を概ね評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-02T00:24:01Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
本稿では、畳み込みニューラルネットワーク(CNN)のような階層型アーキテクチャを用いて、オーバーコンプリート不変量を構築する方法を示す。
オーバーコンプリート性により、そのタスクはニューラルアーキテクチャサーチ(NAS)のような方法で適応的に形成される。
大規模で頑健で解釈可能な視覚タスクの場合、階層的不変表現は伝統的なCNNや不変量に対する効果的な代替物とみなすことができる。
論文 参考訳(メタデータ) (2024-02-23T16:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。