論文の概要: Modeling and Topology Estimation of Low Rank Dynamical Networks
- arxiv url: http://arxiv.org/abs/2511.06674v1
- Date: Mon, 10 Nov 2025 03:42:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.059946
- Title: Modeling and Topology Estimation of Low Rank Dynamical Networks
- Title(参考訳): 低ランク動的ネットワークのモデリングとトポロジー推定
- Authors: Wenqi Cao, Aming Li,
- Abstract要約: 識別可能性を保証する低階動的ネットワークモデルを提案する。
この理論的結果に基づいて,ネットワークエッジを推定する一貫した手法を開発した。
- 参考スコア(独自算出の注目度): 0.21485350418225238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional topology learning methods for dynamical networks become inapplicable to processes exhibiting low-rank characteristics. To address this, we propose the low rank dynamical network model which ensures identifiability. By employing causal Wiener filtering, we establish a necessary and sufficient condition that links the sparsity pattern of the filter to conditional Granger causality. Building on this theoretical result, we develop a consistent method for estimating all network edges. Simulation results demonstrate the parsimony of the proposed framework and consistency of the topology estimation approach.
- Abstract(参考訳): 動的ネットワークのための従来のトポロジー学習法は、低ランク特性を示すプロセスには適用できない。
そこで本研究では,識別可能性を保証する低階動的ネットワークモデルを提案する。
因果的なWienerフィルタを用いることで、フィルタの空間パターンと条件付きグランガー因果関係を結びつける必要十分条件を確立する。
この理論的結果に基づいて,ネットワークエッジを推定する一貫した手法を開発した。
シミュレーションの結果,提案手法の同義性とトポロジ推定手法の整合性を示した。
関連論文リスト
- Certified Neural Approximations of Nonlinear Dynamics [51.01318247729693]
安全クリティカルな文脈では、神経近似の使用は、基礎となるシステムとの密接性に公式な境界を必要とする。
本稿では,認証された一階述語モデルに基づく新しい,適応的で並列化可能な検証手法を提案する。
論文 参考訳(メタデータ) (2025-05-21T13:22:20Z) - Topology-Aware Conformal Prediction for Stream Networks [68.02503121089633]
本研究では,ネットワークトポロジと時間的ダイナミクスを共形予測フレームワークに統合した新しいフレームワークであるspatio-Temporal Adaptive Conformal Inference (textttCISTA)を提案する。
この結果から,TextttCISTAは予測効率とカバレッジのバランスを効果的に保ち,既存のストリームネットワークの共形予測手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-03-06T21:21:15Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
深層生成学習は、従来の地形シミュレーションモデルの限界を克服するための有望なアプローチである。
本研究は, 地下ボリュームにおける条件付き蛇行チャネルに対する, 生成的対向ネットワークと深部変動推論の適用性について検討することを目的とする。
論文 参考訳(メタデータ) (2023-05-12T14:21:14Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
正規化フローは従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための経路を提供することを示す。
本稿では,この拡張された生成モデルの効率を最適化する戦略と応用例を示す。
論文 参考訳(メタデータ) (2022-01-21T19:00:18Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
本稿では,逆グラフ自動エンコーダに基づく潜在ネットワーク埋め込みモデルを提案する。
この枠組みの下では、潜伏構造を発見する問題は、部分的な観測から潜伏関係を推測するものとして定式化されている。
論文 参考訳(メタデータ) (2021-09-30T16:49:46Z) - A useful criterion on studying consistent estimation in community
detection [0.0]
我々は,標準ネットワークにおける分離条件とErd"os-R'enyiランダムグラフのシャープしきい値を用いて一貫した推定を行う。
分離条件には矛盾する現象があり, コミュニティ検出では鋭い閾値がみられた。
その結果、エラー率を小さくし、コミュニティ数への依存を少なくし、ネットワークの疎結合性に対する要求を弱めることができた。
論文 参考訳(メタデータ) (2021-09-30T09:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。