論文の概要: Stochastic normalizing flows as non-equilibrium transformations
- arxiv url: http://arxiv.org/abs/2201.08862v1
- Date: Fri, 21 Jan 2022 19:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 15:30:10.578554
- Title: Stochastic normalizing flows as non-equilibrium transformations
- Title(参考訳): 非平衡変換としての確率正規化流れ
- Authors: Michele Caselle, Elia Cellini, Alessandro Nada, Marco Panero
- Abstract要約: 正規化フローは従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための経路を提供することを示す。
本稿では,この拡張された生成モデルの効率を最適化する戦略と応用例を示す。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows are a class of deep generative models that provide a
promising route to sample lattice field theories more efficiently than
conventional Monte~Carlo simulations. In this work we show that the theoretical
framework of stochastic normalizing flows, in which neural-network layers are
combined with Monte~Carlo updates, is the same that underlies
out-of-equilibrium simulations based on Jarzynski's equality, which have been
recently deployed to compute free-energy differences in lattice gauge theories.
We lay out a strategy to optimize the efficiency of this extended class of
generative models and present examples of applications.
- Abstract(参考訳): 正規化フローは、従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための有望な経路を提供する、深い生成モデルのクラスである。
本研究では, ニューラルネットワーク層をモンテカルロ更新と組み合わせた確率正規化流の理論的な枠組みが, 最近, 格子ゲージ理論における自由エネルギー差を計算するためにデプロイされたjarzynskiの等式に基づく非平衡シミュレーションの基盤となることを述べる。
本稿では,この拡張された生成モデルの効率を最適化するための戦略と応用例を示す。
関連論文リスト
- Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Locality-constrained autoregressive cum conditional normalizing flow for
lattice field theory simulations [0.0]
局所作用積分は条件正規化フローの入力領域を単純化する。
その結果,l-ACNFモデルの自己相関時間は,全格子上の等価正規化フローモデルよりも桁違いに優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-04T13:55:51Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Aspects of scaling and scalability for flow-based sampling of lattice
QCD [137.23107300589385]
格子場理論におけるサンプリングへの機械学習正規化流れの最近の応用は、そのような手法が臨界減速と位相凍結を緩和できる可能性を示唆している。
最先端の格子量子色力学計算に適用できるかどうかはまだ定かではない。
論文 参考訳(メタデータ) (2022-11-14T17:07:37Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
本研究は,フェルミオン行列式の推定器として擬フェルミオンを用いたフェルミオン格子場理論におけるフローベースサンプリングのためのゲージ不変アーキテクチャを提案する。
これは最先端の格子場理論計算におけるデフォルトのアプローチであり、QCDのような理論へのフローモデルの実践的応用に欠かせない。
論文 参考訳(メタデータ) (2022-07-18T21:13:34Z) - Learning Lattice Quantum Field Theories with Equivariant Continuous
Flows [10.124564216461858]
格子場理論の高次元確率分布から抽出する機械学習手法を提案する。
提案手法を$phi4$理論で検証し,提案したフローベース手法のサンプリング効率を体系的に上回っていることを示す。
論文 参考訳(メタデータ) (2022-07-01T09:20:05Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Flow-based sampling for multimodal distributions in lattice field theory [7.0631812650826085]
複数の分離モードを持つターゲットのフローモデルを構築するための一連の手法を提案する。
二次元実スカラー場理論のモデル化へのこれらの手法の適用を実証する。
論文 参考訳(メタデータ) (2021-07-01T20:22:10Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Learning CHARME models with neural networks [1.5362025549031046]
我々はCHARME(Conditional Heteroscedastic Autoregressive Mixture of Experts)と呼ばれるモデルを考える。
そこで本研究では,NNに基づく自己回帰関数の学習理論を開発した。
論文 参考訳(メタデータ) (2020-02-08T21:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。