論文の概要: An Adaptive Machine Learning Triage Framework for Predicting Alzheimer's Disease Progression
- arxiv url: http://arxiv.org/abs/2511.06681v1
- Date: Mon, 10 Nov 2025 03:57:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.06643
- Title: An Adaptive Machine Learning Triage Framework for Predicting Alzheimer's Disease Progression
- Title(参考訳): アルツハイマー病の進行予測のための適応型機械学習トレージフレームワーク
- Authors: Richard Hou, Shengpu Tang, Wei Jin,
- Abstract要約: 軽度認知障害(MCI)からアルツハイマー病(AD)への転換の正確な予測は、効果的なパーソナライズされた治療を可能にする。
予測された「情報の価値」に基づいて、高度でコストのかかる特徴を選択的に得る2段階の機械学習フレームワークを設計する。
我々のフレームワークは、基本的な機能と高度な機能の両方を使用するモデルに匹敵する0.929のAUROCを達成しながら、高度なテストの必要性を20%削減します。
- 参考スコア(独自算出の注目度): 12.418201300163545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate predictions of conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) can enable effective personalized therapy. While cognitive tests and clinical data are routinely collected, they lack the predictive power of PET scans and CSF biomarker analysis, which are prohibitively expensive to obtain for every patient. To address this cost-accuracy dilemma, we design a two-stage machine learning framework that selectively obtains advanced, costly features based on their predicted "value of information". We apply our framework to predict AD progression for MCI patients using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework reduces the need for advanced testing by 20% while achieving a test AUROC of 0.929, comparable to the model that uses both basic and advanced features (AUROC=0.915, p=0.1010). We also provide an example interpretability analysis showing how one may explain the triage decision. Our work presents an interpretable, data-driven framework that optimizes AD diagnostic pathways and balances accuracy with cost, representing a step towards making early, reliable AD prediction more accessible in real-world practice. Future work should consider multiple categories of advanced features and larger-scale validation.
- Abstract(参考訳): 軽度認知障害(MCI)からアルツハイマー病(AD)への転換の正確な予測は、効果的なパーソナライズされた治療を可能にする。
認知検査と臨床データは日常的に収集されるが、PETスキャンとCSFバイオマーカー分析の予測能力は欠如しており、全ての患者にとって極めて高価である。
このコスト精度ジレンマに対処するため、予測された「情報の価値」に基づいて高度な特徴を選択的に獲得する2段階の機械学習フレームワークを設計する。
我々は、アルツハイマー病神経画像イニシアチブ(ADNI)のデータを用いて、MCI患者のAD進行を予測する枠組みを適用した。
我々のフレームワークは、基本的な機能と高度な機能の両方を使用するモデル(AUROC=0.915, p=0.1010)に匹敵する0.929のAUROCを達成しながら、高度なテストの必要性を20%削減する。
また,トリアージ決定をいかに説明できるかを示す解釈可能性分析の例を示す。
我々の研究は、AD診断経路を最適化し、精度とコストのバランスをとる、解釈可能なデータ駆動フレームワークを提示し、現実の実践において、早期で信頼性の高いAD予測をよりアクセスしやすいものにするためのステップを示す。
今後の作業では、高度な機能と大規模検証の複数のカテゴリを検討する必要がある。
関連論文リスト
- An Explainable Hybrid AI Framework for Enhanced Tuberculosis and Symptom Detection [55.35661671061754]
結核は、特に資源に制限された遠隔地において、重要な世界的な健康問題である。
本稿では, 胸部X線による疾患および症状の検出を, 2つの頭部と自己監督頭部を統合することで促進する枠組みを提案する。
本モデルでは, 新型コロナウイルス, 結核, 正常症例の鑑別で98.85%の精度が得られ, マルチラベル症状検出では90.09%のマクロF1スコアが得られた。
論文 参考訳(メタデータ) (2025-10-21T17:18:55Z) - An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment [0.0]
心臓病は依然として世界的な健康上の問題である。
従来の診断方法では、心臓病のリスクを正確に特定し、管理することができない。
機械学習は、心臓疾患の診断の正確性、効率、スピードを大幅に向上させる可能性がある。
論文 参考訳(メタデータ) (2025-07-15T10:38:38Z) - An Uncertainty-Aware Dynamic Decision Framework for Progressive Multi-Omics Integration in Classification Tasks [6.736267874971369]
我々は、オミクスデータ分類のための不確実性を考慮したマルチビュー動的決定フレームワークを提案する。
ヘテロジニアスなモジュラリティを統合するために、Dempster-Shafer理論に基づく融合戦略を用いる。
3つのデータセットでは、50%以上のケースが、単一のオミクスモダリティを使用して正確に分類された。
論文 参考訳(メタデータ) (2025-06-20T13:44:14Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - An Interpretable Machine Learning Model with Deep Learning-based Imaging
Biomarkers for Diagnosis of Alzheimer's Disease [4.304406827494684]
本研究では,EBMの強度と,深層学習に基づく特徴抽出を用いた高次元イメージングデータを組み合わせたフレームワークを提案する。
提案手法は,深層学習機能の代わりにボリュームバイオマーカーを用いたESMモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-08-15T13:54:50Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。