論文の概要: An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment
- arxiv url: http://arxiv.org/abs/2507.11185v1
- Date: Tue, 15 Jul 2025 10:38:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.081404
- Title: An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment
- Title(参考訳): 説明可能なAIによる心血管疾患検出とリスクアセスメントのための機械学習手法
- Authors: Md. Emon Akter Sourov, Md. Sabbir Hossen, Pabon Shaha, Mohammad Minoar Hossain, Md Sadiq Iqbal,
- Abstract要約: 心臓病は依然として世界的な健康上の問題である。
従来の診断方法では、心臓病のリスクを正確に特定し、管理することができない。
機械学習は、心臓疾患の診断の正確性、効率、スピードを大幅に向上させる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart disease remains a major global health concern, particularly in regions with limited access to medical resources and diagnostic facilities. Traditional diagnostic methods often fail to accurately identify and manage heart disease risks, leading to adverse outcomes. Machine learning has the potential to significantly enhance the accuracy, efficiency, and speed of heart disease diagnosis. In this study, we proposed a comprehensive framework that combines classification models for heart disease detection and regression models for risk prediction. We employed the Heart Disease dataset, which comprises 1,035 cases. To address the issue of class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied, resulting in the generation of an additional 100,000 synthetic data points. Performance metrics, including accuracy, precision, recall, F1-score, R2, MSE, RMSE, and MAE, were used to evaluate the model's effectiveness. Among the classification models, Random Forest emerged as the standout performer, achieving an accuracy of 97.2% on real data and 97.6% on synthetic data. For regression tasks, Linear Regression demonstrated the highest R2 values of 0.992 and 0.984 on real and synthetic datasets, respectively, with the lowest error metrics. Additionally, Explainable AI techniques were employed to enhance the interpretability of the models. This study highlights the potential of machine learning to revolutionize heart disease diagnosis and risk prediction, thereby facilitating early intervention and enhancing clinical decision-making.
- Abstract(参考訳): 心臓病は、特に医療資源や診断施設へのアクセスが限られている地域では、主要な世界的な健康上の問題となっている。
従来の診断法は、心臓病のリスクを正確に識別し、管理するのに失敗し、悪い結果をもたらすことが多い。
機械学習は、心臓疾患の診断の正確性、効率、スピードを大幅に向上させる可能性がある。
本研究では,心疾患検出のための分類モデルとリスク予測のための回帰モデルを組み合わせた包括的枠組みを提案する。
心疾患データセットは1,035例であった。
クラス不均衡の問題に対処するため、SMOTE(Synthetic Minority Oversampling Technique)が適用され、さらに10万の合成データポイントが生成される。
モデルの有効性を評価するために、精度、精度、リコール、F1スコア、R2、MSE、RMSE、MAEなどのパフォーマンス指標を使用した。
分類モデルの中で、ランダムフォレストがスタンドアウトパフォーマーとして登場し、実際のデータでは97.2%、合成データでは97.6%の精度を達成した。
回帰タスクでは、線形回帰は実データと合成データセットでそれぞれ0.992と0.984のR2値が最も高い値を示し、エラーの基準は最低であった。
さらに、モデルの解釈可能性を高めるために説明可能なAI技術が採用された。
この研究は、機械学習が心臓疾患の診断とリスク予測に革命をもたらす可能性を強調し、早期介入の促進と臨床的意思決定の強化を図っている。
関連論文リスト
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis [0.0]
本研究は,機械学習(ML)による骨粗しょう症のリスク予測の難しさに対処するものである。
XGBoostは評価モデルの中で最大の精度(91%)で、他のモデルの精度(0.92)、リコール(0.91)、F1スコア(0.90)を上回った。
本研究は, 加齢が骨粗しょう症のリスク予測の主要な要因であり, ホルモン変動と家族歴が続くことを示唆している。
論文 参考訳(メタデータ) (2025-05-01T09:05:02Z) - Stroke Disease Classification Using Machine Learning with Feature Selection Techniques [1.6044444452278062]
心臓病は世界中で致死率と死亡率の主要な原因である。
我々は,心臓病の分類を高度化するための特徴選択技術を備えた新しい投票システムを開発した。
XGBoostは、99%の精度、F1スコア、98%のリコール、100%のROC AUCを達成した。
論文 参考訳(メタデータ) (2025-04-01T07:16:49Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
先天性心疾患(CHD)は早期発見を必要とする重要な疾患である。
本研究では, 心電図(PCG)信号を用いたCHD検出のための深層学習モデルを提案する。
バングラデシュの一次データセットを含むいくつかのデータセットで、我々のモデルを評価した。
論文 参考訳(メタデータ) (2025-03-28T05:47:44Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
論文 参考訳(メタデータ) (2024-10-16T22:32:19Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
本稿では,AIPatient Knowledge Graph (AIPatient KG) を入力とし,生成バックボーンとしてReasoning Retrieval-Augmented Generation (RAG) を開発した。
Reasoning RAGは、検索、KGクエリ生成、抽象化、チェッカー、書き直し、要約を含むタスクにまたがる6つのLLMエージェントを活用する。
ANOVA F-value 0.6126, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.6126, p>0.1)。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
セプシスはアメリカ合衆国と世界中で多くの死者を負う重篤な状態である。
機械学習を用いたこれまでの研究では、特徴選択とモデル解釈可能性に制限があった。
本研究は,院内敗血症死亡率を予測するための,解釈可能かつ正確な機械学習モデルを開発することを目的とした。
論文 参考訳(メタデータ) (2024-08-03T00:28:25Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。