論文の概要: Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time
- arxiv url: http://arxiv.org/abs/2511.07023v1
- Date: Mon, 10 Nov 2025 12:10:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.234154
- Title: Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time
- Title(参考訳): 偽アラームの修正:テスト時間にグラフ異常検出器を適応させる
- Authors: Junjun Pan, Yixin Liu, Chuan Zhou, Fei Xiong, Alan Wee-Chung Liew, Shirui Pan,
- Abstract要約: グラフ異常検出(GAD)における未確認正規pattErnsの修正のための,軽量かつプラグアンドプレイなテスト時間適応フレームワークを提案する。
意味的混乱に対処するために、シフトしたデータと元のデータとをグラフ属性レベルで整合させるグラフ整合器を用いる。
10個の実世界のデータセットに対する大規模な実験により、TUNEは事前学習されたGADモデルの合成パターンと実際の見えない正常パターンの両方への一般化性を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 60.341117019125214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
- Abstract(参考訳): グラフ構造化データの異常検出を目的としたグラフ異常検出(GAD)が最近注目されている。
しかし、既存のGAD法ではトレーニングとテストの同じ分布を仮定しており、実際はほとんど有効ではない。
現実のシナリオでは、目に見えないが正常なサンプルがデプロイ中に出現し、元のデータに基づいてトレーニングされたGADモデルのパフォーマンスを低下させる正規化シフトにつながる可能性がある。
経験的分析により,(1)見知らぬ正常標本が新しいパターンによって異常と誤解釈される意味的混乱,(2)見知らぬ正常ノードの表現がメッセージアグリゲーションによって歪む凝集汚染から,その劣化が生じることが明らかとなった。
モデル再トレーニングや微調整のGADモデルは、上記の課題に対する潜在的な解決策となるかもしれないが、モデル再トレーニングのコストが高く、ラベル付きデータを取得するのが難しいため、現実のアプリケーションでは、このアプローチは非現実的になることが多い。
このギャップを埋めるために,我々は,GAD における Unseen Normal pattErns (TUNE) の修正のための,軽量でプラグアンドプレイなテスト時間適応フレームワークを提案した。
意味的混乱に対処するために、シフトしたデータと元のデータとをグラフ属性レベルで整合させるグラフ整合器を用いる。
さらに,表現レベルシフトの最小化を監督信号として活用し,正規性シフトの指標として推定された凝集汚染を利用した調整器を訓練する。
10個の実世界のデータセットに対する大規模な実験により、TUNEは事前学習されたGADモデルの合成パターンと実際の見えない正常パターンの両方への一般化性を著しく向上することが示された。
関連論文リスト
- Leveraging Learning Bias for Noisy Anomaly Detection [19.23861148116995]
本稿では、フル教師なし画像異常検出(FUIAD)の課題に対処する。
従来の方法では、異常のないトレーニングデータを仮定するが、実世界の汚染により、モデルは通常通り異常を吸収する。
モデルに固有の学習バイアスを利用する2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-10T17:47:21Z) - Strengthening Anomaly Awareness [0.0]
我々は、教師なし異常検出の強化を目的とした、異常認識フレームワークの洗練されたバージョンを提案する。
本稿では,2段階のトレーニング戦略を通じて,変分オートエンコーダ(VAE)の最小限の監視を導入する。
論文 参考訳(メタデータ) (2025-04-15T16:52:22Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。