論文の概要: Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
- arxiv url: http://arxiv.org/abs/2511.07288v1
- Date: Mon, 10 Nov 2025 16:35:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.371514
- Title: Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
- Title(参考訳): 深部アクター批判安定化によるオフポリシィ模倣学習の実現
- Authors: Sayambhu Sen, Shalabh Bhatnagar,
- Abstract要約: 本稿では,非政治学習を取り入れてサンプル効率を向上させる逆模倣学習アルゴリズムを提案する。
専門家の行動に頑健に適合するために必要なサンプルの削減を実証する。
- 参考スコア(独自算出の注目度): 6.65616155956618
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
- Abstract(参考訳): 強化学習(RL)による複雑な政策の学習は、しばしば、報酬工学の難しさによって悪化する不安定性と緩やかな収束によって妨げられる。
専門家によるデモンストレーションからの模倣学習(IL)は、報酬への依存を回避します。
しかし, GAIL(Generative Adversarial Imitation Learning, GAIL) Hoなどでは, 現状のIL法が実証されている。
アル 重度のサンプル不効率症だ
これはTRPO Schulmanらのような基本的な政治アルゴリズムの直接的な結果である。
本研究では,非政治学習を取り入れて,サンプル効率を向上させる逆模倣学習アルゴリズムを提案する。
外部のフレームワークと、特に補助的な技術、二重Qネットワークに基づく安定化と、報酬関数推論を伴わない価値学習を組み合わせることで、専門家の行動に頑健に適合するために必要なサンプルの削減を実証する。
関連論文リスト
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
逆強化学習(IRL)では、エージェントは環境との相互作用を通じて専門家のデモンストレーションを再現しようとする。
伝統的にIRLは、敵が報酬モデルを探し出し、学習者が繰り返しRL手順で報酬を最適化する対戦ゲームとして扱われる。
直接ポリシー最適化によるIRLに対する新しいアプローチを提案し、リターンの線形因数分解を後継特徴の内積および報酬ベクトルとして活用する。
論文 参考訳(メタデータ) (2024-11-11T14:05:50Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe(Reinforced Learning)は、模倣学習と逆強化学習の強みを組み合わせて、高密度報酬関数を効率的に学習するフレームワークである。
本フレームワークは, 直接模倣が複雑な動作を再現できないような高次元タスクにおいて, 高い性能のポリシーを生成する。
論文 参考訳(メタデータ) (2024-06-12T17:56:31Z) - Mimicking Better by Matching the Approximate Action Distribution [48.95048003354255]
そこで我々は,Imitation Learning from Observationsのための新しい,サンプル効率の高いオンライン政治アルゴリズムMAADを紹介する。
我々は、専門家のパフォーマンスを達成するためには、かなり少ないインタラクションが必要であり、現在最先端の政治手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T12:43:47Z) - Distillation Policy Optimization [5.439020425819001]
本研究では,評価と制御の両面において2つのデータソースを調和させるアクタ批判学習フレームワークを提案する。
このフレームワークには、統一利便推定器(UAE)と残留基線を含む分散還元機構が組み込まれている。
以上の結果から,オンラインアルゴリズムのサンプル効率は大幅に向上し,非政治的アプローチとのギャップを効果的に埋めることができた。
論文 参考訳(メタデータ) (2023-02-01T15:59:57Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
本稿では,敵対的トレーニングやmin-max最適化を必要としない非政治的サンプル効率の手法を提案する。
実験の結果, D2-Imitation はサンプル効率の向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T19:36:19Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
我々は、政治以外のアクター批判的枠組みにおいて、批評家のほぼ上位信頼度を最大化するために、別の調査政策を訓練する。
最近導入されたDICEフレームワークを応用して、非政治アクター犯罪訓練のための分布補正比を学習する。
論文 参考訳(メタデータ) (2021-10-22T22:07:51Z) - DDPG++: Striving for Simplicity in Continuous-control Off-Policy
Reinforcement Learning [95.60782037764928]
過大評価バイアスが制御される限り、単純な決定論的政策勾配は著しく機能することを示す。
第二に、非政治的なアルゴリズムの典型であるトレーニングの不安定性を、欲張りのポリシー更新ステップに向ける。
第3に、確率推定文学におけるアイデアは、リプレイバッファからの重要サンプル遷移や、性能劣化を防ぐためのポリシー更新に利用できることを示す。
論文 参考訳(メタデータ) (2020-06-26T20:21:12Z) - Off-Policy Adversarial Inverse Reinforcement Learning [0.0]
Adversarial Imitation Learning (AIL)は、強化学習(RL)におけるアルゴリズムのクラスである。
本稿では, サンプル効率が良く, 模倣性能も良好であるOff-policy-AIRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-03T16:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。