論文の概要: When Are Learning Biases Equivalent? A Unifying Framework for Fairness, Robustness, and Distribution Shift
- arxiv url: http://arxiv.org/abs/2511.07485v1
- Date: Wed, 12 Nov 2025 01:01:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.359937
- Title: When Are Learning Biases Equivalent? A Unifying Framework for Fairness, Robustness, and Distribution Shift
- Title(参考訳): 学習バイアスはいつ等価か? 公平性、ロバスト性、分散シフトのための統一フレームワーク
- Authors: Sushant Mehta,
- Abstract要約: 機械学習システムは、保護されたグループに対する不公平さ、刺激的な相関に対する脆さ、少数民族のサブ人口に対するパフォーマンスの低下など、さまざまな障害モードを示す。
本稿では,異なるバイアス機構がモデル性能に定量的に等価な効果をもたらすことを特徴付ける統一理論フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning systems exhibit diverse failure modes: unfairness toward protected groups, brittleness to spurious correlations, poor performance on minority sub-populations, which are typically studied in isolation by distinct research communities. We propose a unifying theoretical framework that characterizes when different bias mechanisms produce quantitatively equivalent effects on model performance. By formalizing biases as violations of conditional independence through information-theoretic measures, we prove formal equivalence conditions relating spurious correlations, subpopulation shift, class imbalance, and fairness violations. Our theory predicts that a spurious correlation of strength $α$ produces equivalent worst-group accuracy degradation as a sub-population imbalance ratio $r \approx (1+α)/(1-α)$ under feature overlap assumptions. Empirical validation in six datasets and three architectures confirms that predicted equivalences hold within the accuracy of the worst group 3\%, enabling the principled transfer of debiasing methods across problem domains. This work bridges the literature on fairness, robustness, and distribution shifts under a common perspective.
- Abstract(参考訳): 機械学習システムは、保護されたグループに対する不公平さ、刺激的な相関に対する脆さ、少数派のサブ人口に対するパフォーマンスの低下など、さまざまな障害モードを示す。
本稿では,異なるバイアス機構がモデル性能に定量的に等価な効果をもたらすことを特徴付ける統一理論フレームワークを提案する。
偏見を情報理論的尺度による条件独立違反として定式化することにより,突発的相関,サブポピュレーションシフト,クラス不均衡,公平性違反に関する形式的同値条件を立証する。
我々の理論は、強度$α$の急激な相関は、サブポピュレーション不均衡比$r \approx (1+α)/(1-α)$として、機能重なりの仮定の下で等価な最悪のグループ精度劣化をもたらすと予測している。
6つのデータセットと3つのアーキテクチャの実証検証により、予測等価性が最悪のグループ 3 % の精度内に保持されていることが確認された。
この研究は、文献の公平性、堅牢性、分布の変化を共通の視点で橋渡しする。
関連論文リスト
- FairReason: Balancing Reasoning and Social Bias in MLLMs [54.26091556079722]
MLLM(Multimodal Large Language Models)は、様々なタスクやモダリティにおいて、最先端の成果をすでに達成している。
近年の研究では、推論能力をさらに推し進めるために、先進的なプロンプトスキームと後続の微調整を探求している。
論文 参考訳(メタデータ) (2025-07-30T19:57:22Z) - Fair Deepfake Detectors Can Generalize [51.21167546843708]
共同設立者(データ分散とモデルキャパシティ)の制御により,公正な介入による一般化が向上することを示す。
この知見を応用して, 逆正当性重み付けとサブグループワイド特徴正規化を併用し, 新たなアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・インセンティブ・インターベンション・インベンション・インテクション(DAID)を提案する。
DAIDは、いくつかの最先端技術と比較して、公平性と一般化の両方において一貫して優れた性能を達成する
論文 参考訳(メタデータ) (2025-07-03T14:10:02Z) - Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
フェア・ミックスド・エフェクト・ディープ・ラーニング(Fair MEDL)フレームワークを提案する。
本フレームワークは,1)不変なFEを学習するためのクラスタ逆効果,2)REのためのベイズニューラルネットワーク,3)最終的な予測のためにFEとREを組み合わせた混合関数,を通じて,クラスタ不変な固定効果(FE)とクラスタ固有ランダムエフェクト(RE)を定量化する。
公正なMEDLフレームワークは、年齢で86.4%、人種で64.9%、性で57.8%、結婚で36.2%の公正性を向上し、堅牢な予測性能を維持している。
論文 参考訳(メタデータ) (2023-10-04T20:18:45Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
本研究では,データ偏差の変化が公正分類器の精度と公平性に及ぼす影響について検討する。
我々の実験は、既存のフェアネスダッシュボードにデータバイアスリスクの尺度を統合する方法を示している。
論文 参考訳(メタデータ) (2023-02-12T13:04:46Z) - Understanding the Impact of Adversarial Robustness on Accuracy Disparity [18.643495650734398]
対向ロバスト性の影響を2つの部分に分解する: 頑健性制約により全てのクラスで標準精度を低下させる固有の効果と、クラス不均衡比によって引き起こされる影響である。
以上の結果から,実世界のデータセットよりも非線形モデルに拡張できる可能性が示唆された。
論文 参考訳(メタデータ) (2022-11-28T20:46:51Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
実際、この仮定は環境間の分散シフトによってほとんど常に破られる。
そこで我々は,様々な経験的推定器に適用可能なスコアベースアプローチであるメカニズムシフトスコア(MSS)を提案する。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - Bias-inducing geometries: an exactly solvable data model with fairness implications [12.532003449620607]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
本研究では,雑音情報に基づく機械学習モデルの公平性の測定問題について検討する。
本稿では, 精度の高い公平性評価が可能な弱い条件を特徴付けることを目的とした理論的解析を行う。
論文 参考訳(メタデータ) (2021-05-20T18:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。