論文の概要: Improving Industrial Injection Molding Processes with Explainable AI for Quality Classification
- arxiv url: http://arxiv.org/abs/2511.08108v1
- Date: Wed, 12 Nov 2025 01:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.647264
- Title: Improving Industrial Injection Molding Processes with Explainable AI for Quality Classification
- Title(参考訳): 品質分類のための説明可能なAIによる工業用射出成形プロセスの改善
- Authors: Georg Rottenwalter, Marcel Tilly, Victor Owolabi,
- Abstract要約: 射出成形品の品質分類に及ぼすXAI技術を用いた機能低下の影響について検討した。
この結果から,高分類性能を維持しつつ,特徴量の削減により一般化が向上することが示唆された。
このアプローチは、AIによる品質管理、特にセンサー能力に制限のある産業環境での実現可能性を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning is an essential tool for optimizing industrial quality control processes. However, the complexity of machine learning models often limits their practical applicability due to a lack of interpretability. Additionally, many industrial machines lack comprehensive sensor technology, making data acquisition incomplete and challenging. Explainable Artificial Intelligence offers a solution by providing insights into model decision-making and identifying the most relevant features for classification. In this paper, we investigate the impact of feature reduction using XAI techniques on the quality classification of injection-molded parts. We apply SHAP, Grad-CAM, and LIME to analyze feature importance in a Long Short-Term Memory model trained on real production data. By reducing the original 19 input features to 9 and 6, we evaluate the trade-off between model accuracy, inference speed, and interpretability. Our results show that reducing features can improve generalization while maintaining high classification performance, with an small increase in inference speed. This approach enhances the feasibility of AI-driven quality control, particularly for industrial settings with limited sensor capabilities, and paves the way for more efficient and interpretable machine learning applications in manufacturing.
- Abstract(参考訳): 機械学習は、産業品質管理プロセスの最適化に不可欠なツールである。
しかしながら、機械学習モデルの複雑さは、解釈可能性の欠如により、実用性を制限することが多い。
さらに、多くの産業機械は包括的センサー技術に欠けており、データの取得は不完全で困難である。
説明可能な人工知能は、モデル決定に関する洞察を提供し、分類の最も関連する特徴を特定することで、ソリューションを提供する。
本稿では,XAI技術を用いた特徴量削減が射出成形品の品質分類に与える影響について検討する。
実運用データに基づいて訓練されたLong Short-Term Memoryモデルにおいて、SHAP, Grad-CAM, LIME を用いて特徴的重要性を解析する。
元の19の入力特徴を9と6に減らし、モデル精度、推論速度、解釈可能性のトレードオフを評価する。
提案手法は, 性能を向上しつつ, 性能を向上し, 推論速度を抑えながら, 性能を向上できることを示す。
このアプローチは、特にセンサー能力に制限のある産業環境でのAI駆動品質制御の実現性を高め、製造業におけるより効率的で解釈可能な機械学習アプリケーションを実現する。
関連論文リスト
- Forgetting: A New Mechanism Towards Better Large Language Model Fine-tuning [51.92313556418432]
Supervised Fine-tuning (SFT) は、事前訓練された大規模言語モデル (LLM) において重要な役割を果たす。
各コーパス内のトークンを、モデルパフォーマンスを改善するのに有用かどうかに基づいて、正と負の2つの部分に分類することを提案する。
我々は、よく確立されたベンチマークで実験を行い、この忘れるメカニズムが全体のモデル性能を向上するだけでなく、より多様なモデル応答を促進することを発見した。
論文 参考訳(メタデータ) (2025-08-06T11:22:23Z) - Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - On a Uniform Causality Model for Industrial Automation [61.303828551910634]
産業自動化の様々な応用分野に対する一様因果モデルを提案する。
得られたモデルは、サイバー物理システムの振る舞いを数学的に記述する。
このモデルは、機械学習に焦点を当てた産業自動化における新しいアプローチの応用の基盤として機能することが示されている。
論文 参考訳(メタデータ) (2022-09-20T11:23:51Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Toward Fault Detection in Industrial Welding Processes with Deep
Learning and Data Augmentation [0.0]
本稿では,AIツールの産業的実現における課題について述べる。
我々はオブジェクト検出APIからオブジェクト検出アルゴリズムを使用し、転送学習を用いてユースケースに適応する。
画像拡張によるデータセットの適度なスケーリングは、結合(IoU)とリコールの交差点の改善につながる。
論文 参考訳(メタデータ) (2021-06-18T14:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。