論文の概要: PCRLLM: Proof-Carrying Reasoning with Large Language Models under Stepwise Logical Constraints
- arxiv url: http://arxiv.org/abs/2511.08392v1
- Date: Wed, 12 Nov 2025 01:57:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.793298
- Title: PCRLLM: Proof-Carrying Reasoning with Large Language Models under Stepwise Logical Constraints
- Title(参考訳): PCRLLM:段階論理制約下での大規模言語モデルによる韻律推論
- Authors: Tangrui Li, Pei Wang, Hongzheng Wang Christian Hahm, Matteo Spatola, Justin Shi,
- Abstract要約: 大規模言語モデルを用いた韻法推論(PCRLLM)を提案する。
PCRLLMは、自然言語の定式化を維持しながら、単一ステップの推論を推論する。
大規模ステップレベルの推論データを生成するためのベンチマークスキーマを提案する。
- 参考スコア(独自算出の注目度): 2.8310349862016726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often exhibit limited logical coherence, mapping premises to conclusions without adherence to explicit inference rules. We propose Proof-Carrying Reasoning with LLMs (PCRLLM), a framework that constrains reasoning to single-step inferences while preserving natural language formulations. Each output explicitly specifies premises, rules, and conclusions, thereby enabling verification against a target logic. This mechanism mitigates trustworthiness concerns by supporting chain-level validation even in black-box settings. Moreover, PCRLLM facilitates systematic multi-LLM collaboration, allowing intermediate steps to be compared and integrated under formal rules. Finally, we introduce a benchmark schema for generating large-scale step-level reasoning data, combining natural language expressiveness with formal rigor.
- Abstract(参考訳): 大規模言語モデル(LLM)はしばしば限定的な論理コヒーレンスを示し、前提を明示的な推論規則に従わずに結論にマッピングする。
自然言語の定式化を保ちながら単一ステップ推論の推論を制約するフレームワークであるLLM(Proof-Carrying Reasoning with LLMs)を提案する。
各出力は、前提、ルール、結論を明確に指定し、それによってターゲットロジックに対する検証を可能にする。
このメカニズムは、ブラックボックスの設定でもチェーンレベルの検証をサポートすることで、信頼性の懸念を軽減する。
さらにPCRLLMは、体系的なマルチLLMコラボレーションを促進し、中間ステップを形式的なルールの下で比較、統合することができる。
最後に,自然言語表現性と形式的厳密性を組み合わせた大規模ステップレベルの推論データを生成するためのベンチマークスキーマを提案する。
関連論文リスト
- Implicit Reasoning in Large Language Models: A Comprehensive Survey [67.53966514728383]
大規模言語モデル(LLM)は、幅広いタスクにまたがる強力な一般化を実証している。
最近の研究は、暗黙の推論に拍車をかけた、明示的な思考の連鎖から注意を向けている。
本調査では,表現形式から計算戦略へ焦点を移し,実行パラダイムを中心とした分類を紹介した。
論文 参考訳(メタデータ) (2025-09-02T14:16:02Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
大規模言語モデル(LLM)は、最近、検証可能な報酬付き強化学習(RLVR)を通じて推論能力の顕著な進歩を示した。
本稿では,情報ボトルネック(IB)の原理に基づくLLM推論の理論的特徴について述べる。
IB対応推論最適化(IBRO)を提案する。
論文 参考訳(メタデータ) (2025-07-24T13:14:25Z) - CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
チェーン・オブ・シント(CoT)推論は、大規模な言語モデルで複雑な問題を解釈可能な中間ステップに分解することを可能にする。
我々は,遅延状態遷移を伴うマルコフ決定プロセス(MDP)としてCoT推論を定式化するフレームワークであるgroundingSを紹介する。
我々は、ベンチマーク推論タスクにおける推論精度、多様性、探索効率の改善を示す。
論文 参考訳(メタデータ) (2025-07-10T21:32:18Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - DECIDER: A Dual-System Rule-Controllable Decoding Framework for Language Generation [57.07295906718989]
制約付き復号法は,事前訓練された大言語(Ms と PLMs)が生成するテキストの意味やスタイルを,推論時に様々なタスクに対して制御することを目的としている。
これらの方法は、しばしば、欲求的かつ明示的にターゲットを選択することによって、もっともらしい連続を導く。
認知二重プロセス理論に着想を得て,新しい復号化フレームワークDECDERを提案する。
論文 参考訳(メタデータ) (2024-03-04T11:49:08Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
本稿では,直接推論 (DR) と間接推論 (IR) を並列な複数の推論経路として考慮し,最終解を導出する直接間接推論 (DIR) 手法を提案する。
我々のDIR法は単純だが有効であり、既存のCoT法と簡単に統合できる。
論文 参考訳(メタデータ) (2024-02-06T03:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。