論文の概要: Learning Topology-Driven Multi-Subspace Fusion for Grassmannian Deep Network
- arxiv url: http://arxiv.org/abs/2511.08628v2
- Date: Fri, 14 Nov 2025 04:39:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-17 14:38:02.073192
- Title: Learning Topology-Driven Multi-Subspace Fusion for Grassmannian Deep Network
- Title(参考訳): グラスマンディープネットワークのための位相駆動型マルチサブスペース融合の学習
- Authors: Xuan Yu, Tianyang Xu,
- Abstract要約: グラスマン多様体は幾何学的表現学習のための強力なキャリアを提供する。
本稿では,グラスマン多様体上での適応的部分空間協調を実現するトポロジ駆動型多部分空間融合フレームワークを提案する。
我々の研究は幾何学的深層学習を推進し、ユークリッドネットワークの証明されたマルチチャネル相互作用の哲学を非ユークリッド領域に適用する。
- 参考スコア(独自算出の注目度): 31.003374497881968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grassmannian manifold offers a powerful carrier for geometric representation learning by modelling high-dimensional data as low-dimensional subspaces. However, existing approaches predominantly rely on static single-subspace representations, neglecting the dynamic interplay between multiple subspaces critical for capturing complex geometric structures. To address this limitation, we propose a topology-driven multi-subspace fusion framework that enables adaptive subspace collaboration on the Grassmannian. Our solution introduces two key innovations: (1) Inspired by the Kolmogorov-Arnold representation theorem, an adaptive multi-subspace modelling mechanism is proposed that dynamically selects and weights task-relevant subspaces via topological convergence analysis, and (2) a multi-subspace interaction block that fuses heterogeneous geometric representations through Fréchet mean optimisation on the manifold. Theoretically, we establish the convergence guarantees of adaptive subspaces under a projection metric topology, ensuring stable gradient-based optimisation. Practically, we integrate Riemannian batch normalisation and mutual information regularisation to enhance discriminability and robustness. Extensive experiments on 3D action recognition (HDM05, FPHA), EEG classification (MAMEM-SSVEPII), and graph tasks demonstrate state-of-the-art performance. Our work not only advances geometric deep learning but also successfully adapts the proven multi-channel interaction philosophy of Euclidean networks to non-Euclidean domains, achieving superior discriminability and interpretability.
- Abstract(参考訳): グラスマン多様体は、高次元データを低次元部分空間としてモデル化することで幾何学的表現学習のための強力なキャリアを提供する。
しかし、既存のアプローチは主に静的な単一部分空間表現に依存しており、複雑な幾何学構造を捉えるのに不可欠な複数の部分空間間の動的相互作用を無視している。
この制限に対処するために、グラスマン多様体上で適応的な部分空間協調を可能にするトポロジ駆動型マルチサブスペース融合フレームワークを提案する。
この手法では,(1)コルモゴロフ・アルノルドの表現定理に着想を得た適応的多部分空間モデリング機構が,位相収束解析によりタスク関連部分空間を動的に選択・重み付けし,(2)フレシェ平均の多様体上での不均一な幾何学的表現を融合する多部分空間相互作用ブロックを提案する。
理論的には、射影計量トポロジーの下で適応部分空間の収束保証を確立し、安定した勾配に基づく最適化を保証する。
実際に、差別性と堅牢性を高めるために、リーマンバッチ正規化と相互情報正規化を統合する。
3D行動認識(HDM05、FPHA)、脳波分類(MAMEM-SSVEPII)、グラフタスクに関する大規模な実験は、最先端の性能を示している。
我々の研究は幾何学的深層学習を前進させるだけでなく、ユークリッドネットワークの証明されたマルチチャネル相互作用の哲学を非ユークリッド領域に適応させ、優れた識別性と解釈可能性を達成する。
関連論文リスト
- The Neural Differential Manifold: An Architecture with Explicit Geometric Structure [8.201374511929538]
本稿では,その基本設計に幾何学的構造を明示的に組み込んだニューラルネットワークアーキテクチャであるニューラル微分マニフォールド(NDM)を紹介する。
我々は、より効率的な最適化の可能性、継続学習の強化、科学的発見と制御可能な生成モデルへの応用など、このアプローチの理論的利点を分析する。
論文 参考訳(メタデータ) (2025-10-29T02:24:27Z) - Riemannian Consistency Model [57.933800575074535]
本稿では,Riemannian Consistency Model (RCM)を提案する。
RCMの離散的および連続的な訓練目標に対する閉形式解を導出する。
我々は、RCMの目的を解釈するためのユニークなキネマティクスの視点を提供し、新しい理論的な角度を提供する。
論文 参考訳(メタデータ) (2025-10-01T14:57:25Z) - Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding [58.38294408121273]
CUA-O3Dと呼ばれるオープン語彙3次元シーン理解のためのクロスモーダル・不確実性認識アグリゲーションを提案する。
提案手法は,(1)空間認識型視覚基盤モデルの幾何学的知識とともに,VLMのセマンティックな先入観を取り入れること,(2)モデル固有の不確かさを捉えるために,新しい決定論的不確実性推定を用いること,の2つの課題に対処する。
論文 参考訳(メタデータ) (2025-03-20T20:58:48Z) - Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
時間的知識グラフ(TKG)推論は、過去のデータに基づいて将来の出来事を予測する。
既存のユークリッドモデルはセマンティクスを捉えるのに優れているが、階層構造に苦しむ。
ユークリッドモデルと双曲モデルの両方の強みを利用する新しいハイブリッド幾何空間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-30T10:33:08Z) - Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation [35.20583774988951]
知識に基づく多重適応空間融合法(MCKG)を提案する。
特定の多様体のみを採用する既存の方法とは異なり、双曲的、ユークリッド的、球面的空間と互換性のある統一空間を導入する。
さらに,双曲空間と球面空間の両方から得られるプル・アンド・プッシュ処理を可能にする幾何対応最適化手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T12:11:16Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - Machine Learning and Polymer Self-Consistent Field Theory in Two Spatial
Dimensions [0.491574468325115]
深層学習を伴う自己整合場理論シミュレーションのデータを活用する計算フレームワークを提案する。
サドル点, 局所平均モノマー密度場を効率よく正確に予測するために, GAN(Generative Adversarial Network)を導入した。
このGANアプローチは、メモリと計算コストの両方を節約する。
論文 参考訳(メタデータ) (2022-12-16T04:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。