論文の概要: Resource-Efficient Variational Quantum Classifier
- arxiv url: http://arxiv.org/abs/2511.09204v1
- Date: Thu, 13 Nov 2025 01:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.462861
- Title: Resource-Efficient Variational Quantum Classifier
- Title(参考訳): 資源効率の良い変分量子分類器
- Authors: Petr Ptáček, Paulina Lewandowska, Ryszard Kukulski,
- Abstract要約: 量子コンピューティングは情報処理の革命を約束し、機械学習と分類タスクに大きな可能性を秘めている。
1つの重要な制限は予測段階で発生し、量子モデルの本質的なランダム性は繰り返し実行を必要とする。
本稿では,不明瞭な量子分類器を定義可能な変分量子分類器の新しい測定方法を提案する。
- 参考スコア(独自算出の注目度): 2.1276989852202726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing promises a revolution in information processing, with significant potential for machine learning and classification tasks. However, achieving this potential requires overcoming several fundamental challenges. One key limitation arises at the prediction stage, where the intrinsic randomness of quantum model outputs necessitates repeated executions, resulting in substantial overhead. To overcome this, we propose a novel measurement strategy for a variational quantum classifier that allows us to define the unambiguous quantum classifier. This strategy achieves near-deterministic predictions while maintaining competitive classification accuracy in noisy environments, all with significantly fewer quantum circuit executions. Although this approach entails a slight reduction in performance, it represents a favorable trade-off for improved resource efficiency. We further validate our theoretical model with supporting experimental results.
- Abstract(参考訳): 量子コンピューティングは、情報処理の革命を約束し、機械学習と分類タスクに大きな可能性を秘めている。
しかし、この可能性を達成するには、いくつかの根本的な課題を克服する必要がある。
1つの重要な制限は予測段階で発生し、量子モデルの本質的なランダム性は繰り返し実行を必要とするため、かなりのオーバーヘッドをもたらす。
これを解決するために,不明瞭な量子分類器を定義できる変分量子分類器の新しい測定方法を提案する。
この戦略は、ノイズの多い環境での競合的な分類精度を維持しながら、ほぼ決定論的予測を達成する。
このアプローチは性能をわずかに低下させるが、リソース効率を改善するための良いトレードオフである。
実験結果を裏付ける理論モデルをさらに検証する。
関連論文リスト
- Resource-Efficient Hadamard Test Circuits for Nonlinear Dynamics on a Trapped-Ion Quantum Computer [1.2063443893298391]
本稿では,Adamardテスト回路の低深さ実装を提案する。
我々は変分アルゴリズムに特化してパラメータ化量子アンサッツを開発した。
以上の結果より,シングルビットゲート数と2ビットゲート数が有意に減少した。
論文 参考訳(メタデータ) (2025-07-25T13:16:54Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-04-13T11:49:53Z) - Realizing Quantum Adversarial Defense on a Trapped-ion Quantum Processor [3.1858340237924776]
我々は、イオントラップ量子プロセッサ上に、データ再ロードに基づく量子分類器を実装した。
MNISTデータセットに優れたロバスト性を示す。
論文 参考訳(メタデータ) (2025-03-04T09:22:59Z) - Supervised Learning Guarantee for Quantum AdaBoost [7.473180902609473]
ノイズの多い中間スケール量子(NISQ)時代には、変分量子アルゴリズムは量子回路の量子ビット数の制限と浅い深さのために制約される。
本稿では,量子適応ブースティング(AdaBoost)の学習保証を理論的に確立し,数値的に検証する。
我々の研究は、現在のNISQ時代において、適切なアンサンブル法を導入することは、量子機械学習アルゴリズムの性能向上に特に有用であることを示している。
論文 参考訳(メタデータ) (2024-02-04T07:18:44Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Robust quantum classifier with minimal overhead [0.8057006406834467]
カーネル法に基づくバイナリ分類のためのいくつかの量子アルゴリズムが提案されている。
これらのアルゴリズムは期待値を推定することに依存しており、高額な量子データ符号化手順を何度も繰り返す必要がある。
カーネルベースのバイナリ分類は,データの数や寸法に関わらず,単一キュービットで行うことができることを示す。
論文 参考訳(メタデータ) (2021-04-16T14:51:00Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。