論文の概要: Pack-A-Mal: A Malware Analysis Framework for Open-Source Packages
- arxiv url: http://arxiv.org/abs/2511.09957v1
- Date: Fri, 14 Nov 2025 01:21:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.604566
- Title: Pack-A-Mal: A Malware Analysis Framework for Open-Source Packages
- Title(参考訳): Pack-A-Mal: オープンソースパッケージのマルウェア分析フレームワーク
- Authors: Duc-Ly Vu, Thanh-Cong Nguyen, Minh-Khanh Vu, Ngoc-Thanh Nguyen, Kim-Anh Do Thi,
- Abstract要約: 本稿では、静的解析よりも動的解析の方が、より深い洞察を提供するが、実行中のソフトウェア動作を理解するのにリソース集約的であることを強調する。
動的解析ツールであるパッケージ分析を強化し、実行されたコマンド、アクセスされたファイル、ネットワーク通信を含む主要なランタイム動作をキャプチャします。
この修正により、gVisorのようなコンテナサンドボックス技術を使用することで、ホストシステムを著しく損なうことなく、潜在的に悪意のあるパッケージを分析することができる。
- 参考スコア(独自算出の注目度): 2.6686157733529847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasingly sophisticated environment in which attackers operate makes software security an even greater challenge in open-source projects, where malicious packages are prevalent. Static analysis tools, such as Malcontent, are highly useful but are often incapable of dealing with obfuscated malware. Such situations lead to an unreasonably high rate of false positives. This paper highlights that dynamic analysis, rather than static analysis, provides greater insight but is also more resource-intensive for understanding software behaviour during execution. In this study, we enhance a dynamic analysis tool, package-analysis, to capture key runtime behaviours, including commands executed, files accessed, and network communications. This modification enables the use of container sandboxing technologies, such as gVisor, to analyse potentially malicious packages without significantly compromising the host system.
- Abstract(参考訳): 攻撃者が運用する高度な環境は、悪意のあるパッケージが普及するオープンソースプロジェクトにおいて、ソフトウェアセキュリティをさらに大きな課題にしている。
Malcontentのような静的解析ツールは、非常に有用であるが、しばしば難読化マルウェアを扱うことができない。
このような状況は、不当に偽陽性の率を高くする。
本稿では、静的解析よりも動的解析の方が、より深い洞察を提供するが、実行中のソフトウェア動作を理解するのにリソース集約的であることを強調する。
本研究では,動的解析ツールであるパッケージ分析を強化し,実行されたコマンド,アクセスされたファイル,ネットワーク通信など,主要な実行時動作をキャプチャする。
この修正により、gVisorのようなコンテナサンドボックス技術を使用することで、ホストシステムを著しく損なうことなく、潜在的に悪意のあるパッケージを分析することができる。
関連論文リスト
- Cuckoo Attack: Stealthy and Persistent Attacks Against AI-IDE [64.47951172662745]
Cuckoo Attackは、悪意のあるペイロードを構成ファイルに埋め込むことで、ステルス性と永続的なコマンド実行を実現する新しい攻撃である。
攻撃パラダイムを初期感染と持続性という2つの段階に分類する。
当社は、ベンダーが製品のセキュリティを評価するために、実行可能な7つのチェックポイントを提供しています。
論文 参考訳(メタデータ) (2025-09-19T04:10:52Z) - Certifiably robust malware detectors by design [48.367676529300276]
設計によるロバストなマルウェア検出のための新しいモデルアーキテクチャを提案する。
すべての堅牢な検出器を特定の構造に分解することができ、それを経験的に堅牢なマルウェア検出器の学習に適用できることを示す。
我々のフレームワークERDALTはこの構造に基づいている。
論文 参考訳(メタデータ) (2025-08-10T09:19:29Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - Exploring Large Language Models for Semantic Analysis and Categorization of Android Malware [0.0]
mspは、階層的な階層化チェーンと戦略的プロンプトエンジニアリングを通じて、Androidのマルウェア分析を強化するように設計されている。
mspは、関数、クラス、パッケージレベルで非常に堅牢な要約を提供しながら、最大77%の分類精度を達成することができる。
論文 参考訳(メタデータ) (2025-01-08T21:22:45Z) - Fakeium: A Dynamic Execution Environment for JavaScript Program Analysis [3.7980955101286322]
Fakeiumは、JavaScriptプログラムの効率的で大規模な動的解析のために設計された、新しい、オープンソースで軽量な実行環境である。
Fakeiumは、API呼び出しと文字列リテラルを追加することで、従来の静的解析を補完する。
Fakeiumの柔軟性と、特に難解なソースで隠れたAPI呼び出しを検出する能力は、セキュリティアナリストが悪意のある振る舞いを検出する貴重なツールとしての可能性を強調している。
論文 参考訳(メタデータ) (2024-10-28T09:27:26Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - JITScanner: Just-in-Time Executable Page Check in the Linux Operating System [6.725792100548271]
JITScannerはLoadable Kernel Module (LKM)上に構築されたLinux指向パッケージとして開発されている。
スケーラブルなマルチプロセッサ/コア技術を使用してLKMと効率的に通信するユーザレベルのコンポーネントを統合する。
JITScannerによるマルウェア検出の有効性と、通常のランタイムシナリオにおける最小限の侵入が広くテストされている。
論文 参考訳(メタデータ) (2024-04-25T17:00:08Z) - Unveiling the Invisible: Detection and Evaluation of Prototype Pollution Gadgets with Dynamic Taint Analysis [4.8966278983718405]
本稿では、開発者がアプリケーションのソフトウェアサプライチェーンにあるガジェットを識別するのに役立つ最初の半自動パイプラインであるDastyを提案する。
DastyはサーバーサイドのNode.jsアプリケーションをターゲットにしており、動的テナント分析の強化に依存している。
私たちは、最も依存度の高いNPMパッケージの研究にDastyを使って、ACEにつながるガジェットの存在を分析します。
論文 参考訳(メタデータ) (2023-11-07T11:55:40Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。