論文の概要: Masking criteria for selecting an imputation model
- arxiv url: http://arxiv.org/abs/2511.10048v1
- Date: Fri, 14 Nov 2025 01:28:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.662845
- Title: Masking criteria for selecting an imputation model
- Title(参考訳): 計算モデル選択のためのマスキング基準
- Authors: Yanjiao Yang, Daniel Suen, Yen-Chi Chen,
- Abstract要約: マスキング・ワン・アウト(MOO: masking-one-out)は、観測されたエントリをマスキングし、インプットされた値と比較する手法である。
本稿では,この手順の最適性について検討し,欠落したデータ仮定に一般化する。
データの性質を適切に考慮した計算モデルを選択することができるように、ランク変換、エネルギー距離、可能性原理に基づく3つの修正MOO基準を導入する。
- 参考スコア(独自算出の注目度): 0.5352699766206807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The masking-one-out (MOO) procedure, masking an observed entry and comparing it versus its imputed values, is a very common procedure for comparing imputation models. We study the optimum of this procedure and generalize it to a missing data assumption and establish the corresponding semi-parametric efficiency theory. However, MOO is a measure of prediction accuracy, which is not ideal for evaluating an imputation model. To address this issue, we introduce three modified MOO criteria, based on rank transformation, energy distance, and likelihood principle, that allow us to select an imputation model that properly account for the stochastic nature of data. The likelihood approach further enables an elegant framework of learning an imputation model from the data and we derive its statistical and computational learning theories as well as consistency of BIC model selection. We also show how MOO is related to the missing-at-random assumption. Finally, we introduce the prediction-imputation diagram, a two-dimensional diagram visually comparing both the prediction and imputation utilities for various imputation models.
- Abstract(参考訳): マスク・ワン・アウト(MOO: masking-one-out)は、観測されたエントリをマスキングし、インプットされた値と比較する手法であり、インプットモデルを比較するための非常に一般的な手順である。
本稿では,この手順の最適性について検討し,不足するデータ仮定に一般化し,対応する半パラメトリック効率理論を確立する。
しかし、MOOは予測精度の尺度であり、計算モデルを評価するには理想的ではない。
この問題に対処するために、ランク変換、エネルギー距離、可能性原理に基づく3つの修正MOO基準を導入し、データの確率的性質を適切に考慮した計算モデルを選択する。
このアプローチにより、データから計算モデルを学ぶためのエレガントな枠組みが実現され、BICモデル選択の一貫性とともに、その統計的および計算的学習理論が導出される。
また、MOOが非ランダムな仮定とどのように関係しているかを示す。
最後に,様々な計算モデルに対する予測・計算ユーティリティを視覚的に比較した2次元図である予測・計算図を提案する。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)のための最初の形式的確率的評価フレームワークを紹介する。
すなわち,モデルの出力分布に関する確率保証の高い新しい指標を提案する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Model Comparison in Approximate Bayesian Computation [0.456877715768796]
自然科学における一般的な問題は、観測されたデータに照らして競合するモデルの比較である。
この枠組みは、実際に使用されるほとんどのモデルにとって難解な確率関数の計算に依存している。
ABCにおけるベイズモデルの比較を行うための新しい効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-15T10:24:16Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Model-based metrics: Sample-efficient estimates of predictive model
subpopulation performance [11.994417027132807]
健康状態の表示、診断、予測のために現在一般的に開発されている機械学習モデル$-$は、様々なパフォーマンス指標で評価される。
サブ集団のパフォーマンスメトリクスは、通常、そのサブグループのデータのみを使用して計算されるため、より小さなグループに対する分散推定が高くなる。
本稿では,予測モデルスコアの条件分布を記述した評価モデル$-$を用いて,モデルベース計量(MBM)の推定値を生成する。
論文 参考訳(メタデータ) (2021-04-25T19:06:34Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。