論文の概要: Robot Crash Course: Learning Soft and Stylized Falling
- arxiv url: http://arxiv.org/abs/2511.10635v1
- Date: Fri, 14 Nov 2025 02:00:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.968521
- Title: Robot Crash Course: Learning Soft and Stylized Falling
- Title(参考訳): ソフトでスタイリッシュな転倒を学習するロボットのクラッシュコース
- Authors: Pascal Strauch, David Müller, Sammy Christen, Agon Serifi, Ruben Grandia, Espen Knoop, Moritz Bächer,
- Abstract要約: 我々は,ロボットのエンドポーズを制御しながら,ロボットの身体的損傷を軽減することを目的としている。
私たちの研究は、二足歩行ロボットでさえ制御された柔らかい転倒を実行できることを示した。
- 参考スコア(独自算出の注目度): 7.959692704349906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in robust locomotion, bipedal robots operating in the real world remain at risk of falling. While most research focuses on preventing such events, we instead concentrate on the phenomenon of falling itself. Specifically, we aim to reduce physical damage to the robot while providing users with control over a robot's end pose. To this end, we propose a robot agnostic reward function that balances the achievement of a desired end pose with impact minimization and the protection of critical robot parts during reinforcement learning. To make the policy robust to a broad range of initial falling conditions and to enable the specification of an arbitrary and unseen end pose at inference time, we introduce a simulation-based sampling strategy of initial and end poses. Through simulated and real-world experiments, our work demonstrates that even bipedal robots can perform controlled, soft falls.
- Abstract(参考訳): 近年のロバストな移動の進歩にもかかわらず、現実世界で動く二足歩行ロボットは転倒の危険に晒されている。
ほとんどの研究はそのような現象を防ぐことに重点を置いているが、我々は自分自身を転倒させる現象に集中している。
具体的には,ロボットのエンドポーズを制御しながら,ロボットの身体的損傷を軽減することを目的としている。
そこで本研究では,強化学習におけるロボット部品の衝撃最小化と保護とを両立させるロボット非依存報酬関数を提案する。
そこで本研究では,初期ポーズと終了ポーズのシミュレーションに基づくサンプリング戦略を導入する。
シミュレーションと実世界の実験によって、二足歩行ロボットでさえ制御された柔らかい転倒を実行できることが実証された。
関連論文リスト
- Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
動的バランスと強化学習(RL)に基づく新しい全身移動アルゴリズムを提案する。
具体的には,ZMP(Zero-Moment Point)駆動の報酬とタスク駆動の報酬を,全身のアクター批判的枠組みで拡張した尺度を活用することで,動的バランス機構を導入する。
フルサイズのUnitree H1-2ロボットによる実験により、非常に狭い地形でのバランスを維持するための手法の有効性が検証された。
論文 参考訳(メタデータ) (2025-02-24T14:53:45Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments [6.21540494241516]
大規模モバイルマルチロボットシステムは、堅牢性とスケーラビリティの可能性が高いため、モノリシックロボットよりも有益である。
マルチロボットシステムのためのコントローラの開発は、対話の多さが予測し難く、モデル化が難しいため、難しい。
本質的にモチベーションは報酬の特定の定式化を避け、好奇心などの異なるドライバで作業しようとする。
Swarmのロボットケースのユニークな利点は、Swarmのメンバーがロボットの環境に飛び込み、自己参照ループでより活発な行動を引き起こすことができることである。
論文 参考訳(メタデータ) (2024-05-04T06:25:58Z) - A GP-based Robust Motion Planning Framework for Agile Autonomous Robot
Navigation and Recovery in Unknown Environments [6.859965454961918]
本稿では,将来の動作計画失敗のリスクを積極的に検出するモデルを提案する。
リスクが一定の閾値を超えると、回復動作がトリガーされる。
我々のフレームワークは、計画立案者の失敗を予測し、計画立案者の成功の可能性を示すためにロボットを回復できる。
論文 参考訳(メタデータ) (2024-02-02T18:27:21Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
既存の安全手法は、ロボットが実行時に学習し適応する能力を無視することが多く、過度に保守的な行動を引き起こす。
本稿では,ロボットの進化する不確実性を明示的に考慮した安全制御ポリシを合成するための,新しいクローズドループパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-03T20:34:01Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
我々は、部分的に観察可能なロボットの監督を生成する完全観測可能なロボットポリシーを開発する。
我々は、RGB-Dカメラを搭載した4足歩行ロボットに、野生での追従回避のインタラクションにポリシーを展開させる。
論文 参考訳(メタデータ) (2023-08-30T17:59:05Z) - Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills
using a Quadrupedal Robot [76.04391023228081]
本研究では,四足歩行ロボットが実世界において,強化学習を用いて精度の高い射撃技術を実現できるという課題に対処する。
本研究では, 深層強化学習を活用して頑健な動作制御政策を訓練する階層的枠組みを提案する。
提案するフレームワークをA1四足歩行ロボットに展開し、実世界のランダムなターゲットに向けて正確にボールを発射できるようにする。
論文 参考訳(メタデータ) (2022-08-01T22:34:51Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z) - Fault-Aware Robust Control via Adversarial Reinforcement Learning [35.16413579212691]
本稿では, 関節損傷症例に対するロボットの脆弱性を大幅に向上させる, 対向強化学習フレームワークを提案する。
我々は,本アルゴリズムを3本指ロボットと4本指ロボットで検証する。
我々のアルゴリズムはシミュレーションでのみ訓練でき、微調整なしで実際のロボットに直接展開できる。
論文 参考訳(メタデータ) (2020-11-17T16:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。