論文の概要: Towards Uncertainty Quantification in Generative Model Learning
- arxiv url: http://arxiv.org/abs/2511.10710v1
- Date: Thu, 13 Nov 2025 09:01:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-17 22:42:18.291722
- Title: Towards Uncertainty Quantification in Generative Model Learning
- Title(参考訳): 生成モデル学習における不確かさの定量化に向けて
- Authors: Giorgio Morales, Frederic Jurie, Jalal Fadili,
- Abstract要約: 生成モデル学習における不確実性定量化の問題を定式化する。
合成データセットに関する予備実験は、集計精度-リコール曲線の有効性を示す。
- 参考スコア(独自算出の注目度): 3.498371632913735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While generative models have become increasingly prevalent across various domains, fundamental concerns regarding their reliability persist. A crucial yet understudied aspect of these models is the uncertainty quantification surrounding their distribution approximation capabilities. Current evaluation methodologies focus predominantly on measuring the closeness between the learned and the target distributions, neglecting the inherent uncertainty in these measurements. In this position paper, we formalize the problem of uncertainty quantification in generative model learning. We discuss potential research directions, including the use of ensemble-based precision-recall curves. Our preliminary experiments on synthetic datasets demonstrate the effectiveness of aggregated precision-recall curves in capturing model approximation uncertainty, enabling systematic comparison among different model architectures based on their uncertainty characteristics.
- Abstract(参考訳): 生成モデルは様々な領域でますます普及しているが、信頼性に関する基本的な懸念は持続している。
これらのモデルの重要かつ未検討の側面は、分布近似能力を取り巻く不確実な定量化である。
現在の評価手法は、主に学習された分布と対象分布の近接性の測定に焦点を合わせ、これらの測定に固有の不確実性を無視している。
本稿では,生成モデル学習における不確実性定量化の問題を定式化する。
本稿では,アンサンブルに基づく高精度リコール曲線の利用を含む研究の方向性について論じる。
合成データセットに関する予備実験では, モデル近似の不確かさを捉える上で, 集合的精度・リコール曲線の有効性を実証し, その不確かさ特性に基づいて, 異なるモデルアーキテクチャ間の系統的比較を可能にした。
関連論文リスト
- On Equivariant Model Selection through the Lens of Uncertainty [49.137341292207]
等変モデルは、予測性能を改善するために対称性に関する事前の知識を活用するが、不特定なアーキテクチャ上の制約がそれを傷つける可能性がある。
我々は、頻繁な(コンフォーマル予測による)、ベイジアン(限界確率による)、およびキャリブレーションに基づく評価による誤りに基づく評価の比較を行った。
不確実性指標は一般的に予測性能と一致するが,ベイズ模型の証拠は矛盾する。
論文 参考訳(メタデータ) (2025-06-23T13:35:06Z) - Improving Group Robustness on Spurious Correlation via Evidential Alignment [26.544938760265136]
ディープニューラルネットワークは、しばしば急激な相関、すなわち非因果的特徴と標的の間の表面的関連を学習し、依存する。
既存のメソッドは通常、外部のグループアノテーションや補助的な決定論的モデルを使用することでこの問題を軽減する。
偏りのあるモデルの振る舞いを理解するために不確実性定量化を利用する新しいフレームワークであるエビデンシャルアライメントを提案する。
論文 参考訳(メタデータ) (2025-06-12T22:47:21Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
本研究では,合成データを用いたモデル適応と一般化について検討する。
我々は、データ類似性を評価するために、Kullback-Leiblerの発散、Jensen-Shannon距離、Mahalanobis距離などの量的尺度を用いる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,あるいは高誤差の「補間体制」が分布変化とモデル不確実性を評価するための補完的手法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-03T10:05:31Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - A Tale Of Two Long Tails [4.970364068620608]
モデルが不確実である例を特定し、その不確実性の原因を特徴付ける。
追加情報が存在する場合の学習速度が,非典型例と雑音例とで異なるか否かを検討する。
以上の結果から,トレーニングの過程で適切に設計された介入は,異なる不確実性源の識別・識別に有効な方法であることが示唆された。
論文 参考訳(メタデータ) (2021-07-27T22:49:59Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。