論文の概要: Latency and Ordering Effects in Online Decisions
- arxiv url: http://arxiv.org/abs/2511.13060v1
- Date: Mon, 17 Nov 2025 07:08:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:24.879811
- Title: Latency and Ordering Effects in Online Decisions
- Title(参考訳): オンライン決定における遅延と順序付け効果
- Authors: Duo Yi,
- Abstract要約: オンライン意思決定システムは遅延フィードバックと順序に敏感なダイナミクスの下で動作している。
ヘテロジニアスレイテンシ、非可換性、実装ギャップ効果を1つの下界ステートメントにパッケージ化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online decision systems routinely operate under delayed feedback and order-sensitive (noncommutative) dynamics: actions affect which observations arrive, and in what sequence. Taking a Bregman divergence $D_Φ$ as the loss benchmark, we prove that the excess benchmark loss admits a structured lower bound $L \ge L_{\mathrm{ideal}} + g_1(λ) + g_2(\varepsilon_\star) + g_{12}(λ,\varepsilon_\star) - D_{\mathrm{ncx}}$, where $g_1$ and $g_2$ are calibrated penalties for latency and order-sensitivity, $g_{12}$ captures their geometric interaction, and $D_{\mathrm{ncx}}\ge 0$ is a nonconvexity/approximation penalty that vanishes under convex Legendre assumptions. We extend this inequality to prox-regular and weakly convex settings, obtaining robust guarantees beyond the convex case. We also give an operational recipe for estimating and monitoring the four terms via simple $2\times 2$ randomized experiments and streaming diagnostics (effective sample size, clipping rate, interaction heatmaps). The framework packages heterogeneous latency, noncommutativity, and implementation-gap effects into a single interpretable lower-bound statement that can be stress-tested and tuned in real-world systems.
- Abstract(参考訳): オンライン意思決定システムは、遅延したフィードバックと順序に敏感な(非可換な)ダイナミクスの下で日常的に運用される: アクションはどの観察が到着するか、どのシーケンスに影響を及ぼす。
損失ベンチマークとしてBregmanの発散$D_a$とすると、過剰なベンチマーク損失は構造化された下限の$L \ge L_{\mathrm{ideal}} + g_1(λ) + g_2(\varepsilon_\star) + g_{12}(λ,\varepsilon_\star) - D_{\mathrm{ncx}}$, where $g_1$ and $g_2$ are calibrated penalties for latency and order-sensitivity, $g_{12}$はそれらの幾何学的相互作用をキャプチャし、$D_{\mathrm{ncx}}\ge 0$は非凸性/近似ペナルティである。
我々は、この不等式を、凸が不規則で弱凸な設定に拡張し、凸のケースを超えて堅牢な保証を得る。
また、簡単な2ドルのランダム化実験とストリーミング診断(効率的なサンプルサイズ、クリッピング率、相互作用ヒートマップ)を通じて、4つの用語を推定および監視するための運用レシピも提供します。
このフレームワークは、異種レイテンシ、非可換性、実装ギャップ効果を、実際のシステムでストレステストやチューニングが可能な単一の解釈可能な低バウンドステートメントにパッケージする。
関連論文リスト
- Can SGD Handle Heavy-Tailed Noise? [6.111519084375339]
Gradient Descent (SGD) は大規模最適化のための機械学習プロジェクトであるが、重尾雑音下での理論的挙動は理解されていない。
このような悪条件下でSGDが確実に成功できるかどうかを精査する。
論文 参考訳(メタデータ) (2025-08-06T20:09:41Z) - Theoretical limits of descending $\ell_0$ sparse-regression ML algorithms [0.0]
本研究では,emphmaximum-likelihood (ML)デコーディングの性能解析プログラムを開発した。
ML性能パラメータの鍵となるのは、残留エンフェロ平均二乗誤差(textbfRMSE$)を発見し、いわゆるエンフェロ遷移(PT)現象を示す。
Fl RDTの具体的実装と実用的妥当性は、典型的には、基礎となる数値評価のサイズのセットを実行する能力に依存している。
論文 参考訳(メタデータ) (2024-10-10T06:33:41Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
本稿では,因果図形モデルにおける最適な介入順序を設計する問題について検討する。
グラフの構造は知られており、ノードは$N$である。
頻繁性(UCBベース)とベイズ的設定に2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T16:21:31Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
通信周波数の異なる分散計算作業者のトレーニングアルゴリズムを示す。
本研究では,より厳密な収束率を$mathcalO!!(sigma2-2_avg!)とする。
また,不均一性の項は,作業者の平均遅延によっても影響されることを示した。
論文 参考訳(メタデータ) (2022-06-16T17:10:57Z) - Distributed Sparse Regression via Penalization [5.990069843501885]
エージェントのネットワーク上の線形回帰を、(集中ノードを持たない)無向グラフとしてモデル化する。
推定問題は、局所的なLASSO損失関数の和とコンセンサス制約の2次ペナルティの最小化として定式化される。
本稿では, ペナル化問題に適用した近似勾配アルゴリズムが, 集中的な統計的誤差の順序の許容値まで線形に収束することを示す。
論文 参考訳(メタデータ) (2021-11-12T01:51:50Z) - Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints [29.227720674726413]
異なる$ell_p$-norm摂動モデルで動作する高速最小ノルム(FMN)攻撃を提案する。
実験の結果、FMNは収束速度と時間において既存の攻撃よりも著しく優れていた。
論文 参考訳(メタデータ) (2021-02-25T12:56:26Z) - Fast Rates for the Regret of Offline Reinforcement Learning [69.23654172273085]
無限水平割引決定プロセス(MDP)における固定行動ポリシーによって生成されたオフラインデータからの強化学習の後悔について検討する。
最適品質関数 $Q*$ に対する任意の推定が与えられたとき、定義するポリシーの後悔は、$Q*$-estimate の点収束率の指数によって与えられる速度で収束することを示す。
論文 参考訳(メタデータ) (2021-01-31T16:17:56Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
非定常環境におけるオンライン凸最適化について検討する。
パフォーマンス指標として動的後悔を選択します。
本研究では, 滑らかさを活かして, 動的後悔をさらに高めることが可能であることを示す。
論文 参考訳(メタデータ) (2020-07-07T14:10:57Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
我々は、他の攻撃モデルに対してスムースな手法を拡張することは困難であることを示す。
我々はCIFARに関する実験結果を示し,その理論を検証した。
論文 参考訳(メタデータ) (2020-02-08T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。