論文の概要: How to Marginalize in Causal Structure Learning?
- arxiv url: http://arxiv.org/abs/2511.14001v1
- Date: Tue, 18 Nov 2025 00:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 16:23:52.847038
- Title: How to Marginalize in Causal Structure Learning?
- Title(参考訳): 因果構造学習におけるマージナライズ方法
- Authors: William Zhao, Guy Van den Broeck, Benjie Wang,
- Abstract要約: 本稿では,各ノードに対する親の制約を回避するために,トラクタブル確率回路を利用する新しい手法を提案する。
その結果,ベイジアン構造学習者は,従来の手法と比較して,その性能を向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 32.08075668495667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian networks (BNs) are a widely used class of probabilistic graphical models employed in numerous application domains. However, inferring the network's graphical structure from data remains challenging. Bayesian structure learners approach this problem by inferring a posterior distribution over the possible directed acyclic graphs underlying the BN. The inference process often requires marginalizing over probability distributions, which is typically done using dynamic programming methods that restrict the set of possible parents for each node. Instead, we present a novel method that utilizes tractable probabilistic circuits to circumvent this restriction. This method utilizes a new learning routine that trains these circuits on both the original distribution and marginal queries. The architecture of probabilistic circuits then inherently allows for fast and exact marginalization on the learned distribution. We then show empirically that utilizing our method to answer marginals allows Bayesian structure learners to improve their performance compared to current methods.
- Abstract(参考訳): ベイズネットワーク(英: Bayesian Network、BN)は、多くのアプリケーションドメインで使われている確率的グラフィカルモデルのクラスである。
しかし、データからネットワークのグラフィカルな構造を推測することは依然として困難である。
ベイズ構造学習者はBNの下にある有向非巡回グラフ上の後続分布を推定することによってこの問題にアプローチする。
推論プロセスでは、しばしば確率分布を極小化する必要があるが、これは一般に各ノードの可能な親の集合を制限する動的プログラミング法を用いて行われる。
そこで我々は,この制約を回避するために,トラクタブル確率回路を利用する新しい手法を提案する。
本手法は,これらの回路を元の分布と限界の問合せの両方に基づいて訓練する新たな学習ルーチンを利用する。
確率回路のアーキテクチャは、本質的に学習された分布の高速かつ正確なマージン化を可能にする。
その結果,ベイジアン構造学習者は,従来の手法と比較して,その性能を向上させることができることがわかった。
関連論文リスト
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
現在のディープラーニングアルゴリズムは通常、後部確率を簡易に推定することで最適分類器を解く。
この単純な手法は、厳密にバランスのとれた学術ベンチマークデータセットに有効であることが証明されている。
しかし、これは現実世界の長い尾のデータ分布には適用できない。
本稿では,データ分布のより正確な理論的推定を行う新しい手法(BAPE)を提案する。
論文 参考訳(メタデータ) (2025-06-29T15:12:50Z) - Scalable Bayesian Structure Learning for Gaussian Graphical Models Using Marginal Pseudo-likelihood [2.312692134587988]
連続時間(生死)および離散時間(可逆ジャンプ)マルコフ連鎖モンテカルロ(MCMC)アルゴリズムを開発し、グラフ空間の後方を効率的に探索する。
アルゴリズムは巨大なグラフ空間にスケールし、1000以上のノードを持つグラフの並列探索を可能にする。
論文 参考訳(メタデータ) (2023-06-30T20:37:40Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
正規化フロー(NF)は、連続生成器を使用して、単純な潜伏分布(例えばガウス分布)をトレーニングデータセットに関連する経験的対象分布にマッピングする。
標準NFは可微分写像を実装しているため、複雑な分布を対象とする場合、病理学的挙動に悩まされることがある。
本稿では,マルコフ連鎖モンテカルロアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-20T09:31:35Z) - On the Foundations of Cycles in Bayesian Networks [4.312746668772342]
本稿では,サイクルフリー設定を包括的かつ保守的に拡張したサイクリックBNのセマンティクスに関する基礎的研究を行う。
まず, BN上の完全関節分布の要件を局所的条件付き確率と独立性に整合させる制約に基づく意味論を提案する。
第二に、無限展開アプローチを形式化する2種類の極限意味論を導入し、マルコフ連鎖の構成によって計算可能であることを示した。
論文 参考訳(メタデータ) (2023-01-20T14:40:17Z) - Local Graph-homomorphic Processing for Privatized Distributed Systems [57.14673504239551]
付加雑音は学習モデルの性能に影響を与えないことを示す。
これは、分散アルゴリズムの差分プライバシーに関する以前の研究に対して、大きな改善である。
論文 参考訳(メタデータ) (2022-10-26T10:00:14Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Asymptotics of Network Embeddings Learned via Subsampling [4.23373349945751]
本研究では,ノード2vecのようなサブサンプリング手法を用いて,単一の統一フレームワークへの表現手法について検討する。
これは、埋め込みベクトルが何を表現し、これらのメソッドが下流のタスクでいかにうまく機能するかを理解するための理論的基盤を提供する。
特に、一般的に使用される損失関数は、Fisher整合性の欠如などの欠点を引き起こす可能性があることを観察する。
論文 参考訳(メタデータ) (2021-07-06T02:54:53Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。