論文の概要: HFL-FlowLLM: Large Language Models for Network Traffic Flow Classification in Heterogeneous Federated Learning
- arxiv url: http://arxiv.org/abs/2511.14199v1
- Date: Tue, 18 Nov 2025 07:11:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 16:23:52.984579
- Title: HFL-FlowLLM: Large Language Models for Network Traffic Flow Classification in Heterogeneous Federated Learning
- Title(参考訳): HFL-FlowLLM:不均一フェデレーション学習におけるネットワークトラフィックフロー分類のための大規模言語モデル
- Authors: Jiazhuo Tian, Yachao Yuan,
- Abstract要約: 5GとIoT(Internet of Things)によって駆動される現代の通信ネットワークでは、QoS(Quality of Service)の管理とセキュリティにおいて、効果的なネットワークトラフィックフローの分類が不可欠である。
従来の集中型機械学習は、これらの異種環境における分散データとプライバシの懸念に悩まされている。
我々は,HFL-FlowLLMを提案する。これは異種フェデレーション学習におけるネットワークトラフィックフロー分類に大規模言語モデルを適用した最初のフレームワークである。
- 参考スコア(独自算出の注目度): 0.10026496861838446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern communication networks driven by 5G and the Internet of Things (IoT), effective network traffic flow classification is crucial for Quality of Service (QoS) management and security. Traditional centralized machine learning struggles with the distributed data and privacy concerns in these heterogeneous environments, while existing federated learning approaches suffer from high costs and poor generalization. To address these challenges, we propose HFL-FlowLLM, which to our knowledge is the first framework to apply large language models to network traffic flow classification in heterogeneous federated learning. Compared to state-of-the-art heterogeneous federated learning methods for network traffic flow classification, the proposed approach improves the average F1 score by approximately 13%, demonstrating compelling performance and strong robustness. When compared to existing large language models federated learning frameworks, as the number of clients participating in each training round increases, the proposed method achieves up to a 5% improvement in average F1 score while reducing the training costs by about 87%. These findings prove the potential and practical value of HFL-FlowLLM in modern communication networks security.
- Abstract(参考訳): 5GとIoT(Internet of Things)によって駆動される現代の通信ネットワークでは、QoS(Quality of Service)の管理とセキュリティにおいて、効果的なネットワークトラフィックフローの分類が不可欠である。
従来の集中型機械学習は、これらの異種環境における分散データとプライバシの懸念に悩まされている。
これらの課題に対処するため,我々はHFL-FlowLLMを提案する。これは異種フェデレーション学習におけるネットワークトラフィックフロー分類に大規模言語モデルを適用する最初のフレームワークである。
ネットワークトラフィックフロー分類のための最新の異種フェデレーション学習手法と比較して、提案手法は平均F1スコアを約13%改善し、魅力的な性能と強靭性を示す。
既存の大規模言語モデルと比較すると,各トレーニングラウンドに参加するクライアントの数が増加するにつれて,トレーニングコストを約87%削減しつつ,F1スコアの最大5%の改善を実現している。
これらの結果は,現代の通信ネットワークセキュリティにおけるHFL-FlowLLMの可能性と実用性を示すものである。
関連論文リスト
- Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は、無線ネットワークにおいて大きな変革をもたらしている。
無線環境では、LLMのトレーニングはセキュリティとプライバシに関する重大な課題に直面している。
本稿では,無線ネットワークにおけるLLMのトレーニング段階の体系的解析を行い,事前学習,命令チューニング,アライメントチューニングを行う。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Communication Resources Constrained Hierarchical Federated Learning for
End-to-End Autonomous Driving [67.78611905156808]
本稿では,最適化に基づくコミュニケーションリソース制約付き階層型学習フレームワークを提案する。
その結果,提案したCRCHFLは収束速度を加速し,フェデレーション学習自律運転モデルの一般化を促進することがわかった。
論文 参考訳(メタデータ) (2023-06-28T12:44:59Z) - FedDBL: Communication and Data Efficient Federated Deep-Broad Learning
for Histopathological Tissue Classification [65.7405397206767]
本稿では,FedDBL(Federated Deep-Broad Learning)を提案する。
FedDBLは1ラウンドの通信と限られたトレーニングサンプルで競合相手をはるかに上回り、マルチラウンドの通信で同等のパフォーマンスを達成している。
異なるクライアント間でのデータやディープモデルを共有しないため、プライバシ問題は十分に解決されており、モデルのセキュリティはモデル反転攻撃のリスクなしに保証される。
論文 参考訳(メタデータ) (2023-02-24T14:27:41Z) - Enhanced Decentralized Federated Learning based on Consensus in
Connected Vehicles [14.80476265018825]
分散システムにおける機械学習(ML)モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
我々は,C-DFL (Consensus based Decentralized Federated Learning)を導入し,コネクテッドカーにおけるフェデレーションラーニングに取り組む。
論文 参考訳(メタデータ) (2022-09-22T01:21:23Z) - An Interpretable Federated Learning-based Network Intrusion Detection
Framework [9.896258523574424]
FEDFORESTは、解釈可能なグラディエントブースティング決定木(GBDT)とフェデレートラーニング(FL)フレームワークを組み合わせた、新しい学習ベースのNIDSである。
FEDFORESTは複数のクライアントで構成されており、サーバがモデルをトレーニングし、侵入を検出するために、ローカルなサイバー攻撃データ特徴を抽出する。
4つのサイバーアタックデータセットの実験は、FEDFORESTが効率的、効率的、解釈可能、拡張可能であることを示した。
論文 参考訳(メタデータ) (2022-01-10T02:12:32Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
我々は,無線ネットワークにおける階層型フェデレーション学習(HFL)アルゴリズムを特徴付ける理論モデルを開発した。
分析の結果,HFLの学習性能は,ハイモービル利用者の学習能力が著しく低下していることが判明した。
これらの問題を回避するため,我々はMACFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-20T10:46:58Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
フェデレートラーニング(Federated Learning、FL)とは、機械学習モデルを分散システムで直接訓練する学習パラダイムである。
一般的なFLアルゴリズムであるemphFederated Averaging (FedAvg)は重みのばらつきに悩まされている。
本稿では,この問題に対処するための局所的な継続的トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-05-26T12:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。