論文の概要: A Primer on Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2511.15969v1
- Date: Thu, 20 Nov 2025 01:47:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.421922
- Title: A Primer on Quantum Machine Learning
- Title(参考訳): 量子機械学習のプライマー
- Authors: Su Yeon Chang, M. Cerezo,
- Abstract要約: 量子機械学習(Quantum Machine Learning, QML)は、量子力学のリソースを応用して学習問題を解決するための計算パラダイムである。
我々は、実用性と保証、アクセスモデルとスピードアップ、古典的なベースラインの間のフィールドの緊張関係について概説する。
我々はQMLのランドスケープのフレンドリーなマップを提供することを目標とし、読者がいつ、そしてどの仮定量子アプローチが真に利益をもたらすかを判断できるようにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning (QML) is a computational paradigm that seeks to apply quantum-mechanical resources to solve learning problems. As such, the goal of this framework is to leverage quantum processors to tackle optimization, supervised, unsupervised and reinforcement learning, and generative modeling-among other tasks-more efficiently than classical models. Here we offer a high level overview of QML, focusing on settings where the quantum device is the primary learning or data generating unit. We outline the field's tensions between practicality and guarantees, access models and speedups, and classical baselines and claimed quantum advantages-flagging where evidence is strong, where it is conditional or still lacking, and where open questions remain. By shedding light on these nuances and debates, we aim to provide a friendly map of the QML landscape so that the reader can judge when-and under what assumptions-quantum approaches may offer real benefits.
- Abstract(参考訳): 量子機械学習(Quantum Machine Learning, QML)は、量子力学のリソースを応用して学習問題を解決するための計算パラダイムである。
このフレームワークの目的は、量子プロセッサを活用して最適化、教師なし、教師なし、強化学習、生成モデリングを古典的モデルよりも効率的に行うことである。
ここでは、量子デバイスが一次学習またはデータ生成ユニットであるような設定に焦点を当てた、QMLの高レベルな概要を紹介します。
我々は、実用性と保証、アクセスモデル、スピードアップ、古典的なベースラインの間の分野の緊張関係を概説し、証拠が強い量子アドバンテージを主張する。
これらのニュアンスや議論に光を当てることで、QMLのランドスケープのフレンドリーなマップを提供することを目指しています。
関連論文リスト
- Advances in Machine Learning: Where Can Quantum Techniques Help? [0.0]
量子機械学習(QML)は、量子コンピューティングと人工知能の交差点における有望なフロンティアである。
本稿では,従来の機械学習の計算ボトルネックに対処するQMLの可能性について検討する。
論文 参考訳(メタデータ) (2025-07-11T07:47:47Z) - Quantum Machine Learning: A Hands-on Tutorial for Machine Learning Practitioners and Researchers [51.03113410951073]
このチュートリアルでは、AIのバックグラウンドを持つ読者を量子機械学習(QML)に紹介する。
自己整合性については、基本原理、代表的QMLアルゴリズム、潜在的な応用、トレーニング容易性、一般化、計算複雑性といった重要な側面を取り上げる。
論文 参考訳(メタデータ) (2025-02-03T08:33:44Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
量子機械学習(Quantum Machine Learning)は、量子コンピューティングと機械学習の交差点におけるパラダイムシフトである。
この分野は、ハードウェアの制約、ノイズ、量子ビットコヒーレンス(英語版)の制限など、重大な課題に直面している。
この調査は、実用的な実世界のアプリケーションに向けて量子機械学習を進めるための基盤となるリソースを提供することを目的としている。
論文 参考訳(メタデータ) (2025-01-16T13:25:49Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning [1.0984331138780683]
人工知能(AI)や機械学習(ML)の手法はますます複雑化しており、同時に人々の生活にも影響を及ぼしている。
並行して、量子機械学習(QML)が登場し、量子コンピューティングハードウェアの改善とクラウドサービスによる可用性の向上が進行中である。
QMLは、量子力学を利用してMLタスク(典型的には量子と古典のリソースを組み合わせた量子古典的ハイブリッドアルゴリズム)を促進する量子強化MLを可能にする。
論文 参考訳(メタデータ) (2023-01-22T15:17:12Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Quantum Reinforcement Learning: the Maze problem [11.240669509034298]
量子領域に強化学習という古典的な概念を一般化した新しいQMLモデルを導入する。
特に,このアイデアを迷路問題に適用し,迷路から逃れるためにはエージェントが最適な行動集合を学習しなければならない。
エージェントは古典的および量子的状態の両方において最適な戦略を学習し、ノイズの多い環境下での動作についても検討する。
論文 参考訳(メタデータ) (2021-08-10T07:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。