論文の概要: The Future of Development Environments with AI Foundation Models: NII Shonan Meeting 222 Report
- arxiv url: http://arxiv.org/abs/2511.16092v1
- Date: Thu, 20 Nov 2025 06:33:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.504194
- Title: The Future of Development Environments with AI Foundation Models: NII Shonan Meeting 222 Report
- Title(参考訳): AIファウンデーションモデルによる開発環境の将来:NII Shonan Meeting 222報告
- Authors: Xing Hu, Raula Gaikovina Kula, Christoph Treude,
- Abstract要約: コード記述から抽象化レベルを向上する能力は、統合開発環境(IDE)内での人間とAIの相互作用を変える可能性がある。
ソフトウェアエンジニアリング、人工知能、ヒューマンコンピュータインタラクションドメインの専門家が集まって、Shonan Meeting 222で課題と機会について議論した。
- 参考スコア(独自算出の注目度): 13.736653705740336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) models are achieving remarkable performance in various tasks, including code generation, testing, code review, and program repair. The ability to increase the level of abstraction away from writing code has the potential to change the Human-AI interaction within the integrated development environment (IDE). To explore the impact of GenAI on IDEs, 33 experts from the Software Engineering, Artificial Intelligence, and Human-Computer Interaction domains gathered to discuss challenges and opportunities at Shonan Meeting 222. This is the report
- Abstract(参考訳): Generative Artificial Intelligence(GenAI)モデルは、コード生成、テスト、コードレビュー、プログラムの修復など、さまざまなタスクにおいて顕著なパフォーマンスを実現している。
コード記述から抽象化レベルを向上する能力は、統合開発環境(IDE)内での人間とAIのインタラクションを変える可能性がある。
GenAIのIDEへの影響を探るため、Software Engineering, Artificial Intelligence, Human-Computer Interactionドメインの専門家33人がShonan Meeting 222で、課題と機会について議論した。
これが報告書です
関連論文リスト
- Human-AI Experience in Integrated Development Environments: A Systematic Literature Review [2.1749194587826026]
人工知能のIDE(Integrated Development Environments)への統合は、開発者がツールと対話する方法を変えようとしている。
このシフトは、統合開発環境(IDE HAX)におけるヒューマンAI体験の出現を表している。
IDE内HAXの研究は依然として断片的であり、現在のプラクティス、課題、機会の統一的な概要の必要性を強調している。
論文 参考訳(メタデータ) (2025-03-08T12:40:18Z) - Reflection on Data Storytelling Tools in the Generative AI Era from the Human-AI Collaboration Perspective [54.152639172274]
大規模生成AI技術は、ビジュアルおよびナレーション生成におけるそのパワーでデータストーリーテリングを強化する可能性がある。
我々は、最新のツールのコラボレーションパターンを、データストーリーテリングにおける人間とAIのコラボレーションを理解するための専用のフレームワークを使用して、以前のツールのパターンと比較する。
これらのAIテクニックのメリットと、人間とAIのコラボレーションへの影響も明らかにされている。
論文 参考訳(メタデータ) (2025-03-04T13:56:18Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
開発者とAIツール間のインタラクションタイプを分類し,11種類のインタラクションタイプを識別する。
この分類に基づいて、AIインタラクションの最適化、開発者のコントロールの改善、AI支援開発における信頼とユーザビリティの課題への対処に焦点を当てた研究課題を概説する。
論文 参考訳(メタデータ) (2025-01-15T12:53:49Z) - Future of Information Retrieval Research in the Age of Generative AI [61.56371468069577]
情報検索(IR)の急速に発展する分野では、大規模言語モデル(LLM)のような生成AI技術の統合が、情報の検索やインタラクションの方法を変えつつある。
このパラダイムシフトを認識したビジョンワークショップが2024年7月に開催され、生成AI時代のIRの将来について議論した。
本報告は、潜在的に重要な研究トピックとしての議論の要約を含み、学術、産業実践家、機関、評価キャンペーン、資金提供機関の推薦リストを含む。
論文 参考訳(メタデータ) (2024-12-03T00:01:48Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
IDEにおけるヒューマンAIエクスペリエンスの研究は、これらのAIツールがソフトウェア開発プロセスをどのように変化させているかを理解する上で非常に重要である。
我々は,IDE内人間-AI体験研究の現状を研究するために文献レビューを行った。
論文 参考訳(メタデータ) (2024-01-19T14:55:51Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。