論文の概要: In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review
- arxiv url: http://arxiv.org/abs/2401.10739v2
- Date: Mon, 22 Jan 2024 10:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 18:40:13.828317
- Title: In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review
- Title(参考訳): 大規模言語モデル時代のイデオロギーにおける人間-ai体験 : 文献レビュー
- Authors: Agnia Sergeyuk, Sergey Titov, Maliheh Izadi
- Abstract要約: IDEにおけるヒューマンAIエクスペリエンスの研究は、これらのAIツールがソフトウェア開発プロセスをどのように変化させているかを理解する上で非常に重要である。
我々は,IDE内人間-AI体験研究の現状を研究するために文献レビューを行った。
- 参考スコア(独自算出の注目度): 2.6703221234079946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated Development Environments (IDEs) have become central to modern
software development, especially with the integration of Artificial
Intelligence (AI) to enhance programming efficiency and decision-making. The
study of in-IDE Human-AI Experience is critical in understanding how these AI
tools are transforming the software development process, impacting programmer
productivity, and influencing code quality. We conducted a literature review to
study the current state of in-IDE Human-AI Experience research, bridging a gap
in understanding the nuanced interactions between programmers and AI assistants
within IDEs. By analyzing 36 selected papers, our study illustrates three
primary research branches: Design, Impact, and Quality of Interaction. The
trends, challenges, and opportunities identified in this paper emphasize the
evolving landscape of software development and inform future directions for
research and development in this dynamic field. Specifically, we invite the
community to investigate three aspects of these interactions: designing
task-specific user interface, building trust, and improving readability.
- Abstract(参考訳): 統合開発環境(ide)は現代のソフトウェア開発の中心となり、特にai(artificial intelligence)の統合によってプログラミング効率と意思決定が向上している。
IDE内部のヒューマンAIエクスペリエンスの研究は、これらのAIツールがソフトウェア開発プロセスをどのように変え、プログラマの生産性に影響を与え、コード品質に影響を与えるかを理解する上で極めて重要である。
我々は,IDE内におけるプログラマとAIアシスタント間のあいまいな相互作用を理解するためのギャップを埋めて,IDE内人間-AIエクスペリエンス研究の現状を研究するために文献レビューを行った。
36件の論文を分析した結果, デザイン, インパクト, 品質の3つの主要な研究分野が明らかになった。
本論文で特定されたトレンド、課題、機会は、ソフトウェア開発の進化の風景を強調し、このダイナミックな分野における研究開発の今後の方向性を告げる。
具体的には,タスク固有のユーザインターフェースの設計,信頼の構築,可読性の向上という3つの側面について,コミュニティに調査を依頼する。
関連論文リスト
- How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
開発者とAIツール間のインタラクションタイプを分類し,11種類のインタラクションタイプを識別する。
この分類に基づいて、AIインタラクションの最適化、開発者のコントロールの改善、AI支援開発における信頼とユーザビリティの課題への対処に焦点を当てた研究課題を概説する。
論文 参考訳(メタデータ) (2025-01-15T12:53:49Z) - The Design Space of in-IDE Human-AI Experience [6.05260196829912]
主な発見は、よりパーソナライズされ、積極的に、信頼性の高いAIシステムの必要性を強調している。
われわれの調査によると、Adoptersは高度な機能と非断続的な統合を歓迎しているが、Churnersは信頼性とプライバシの改善の必要性を強調している。
非ユーザとは対照的に、採用の障壁として、スキル開発と倫理的懸念に焦点を当てます。
論文 参考訳(メタデータ) (2024-10-11T10:02:52Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
本稿では,ソフトウェア開発における生成AIツールの統合について検討する。
パイロットケーススタディを通じて、生成可能なAIツールを日々の作業ルーチンに統合する上で、貴重な経験を集めました。
以上の結果から,これらのツールの個人の生産性に対する肯定的な認識と,特定された制限に対処する必要性が示唆された。
論文 参考訳(メタデータ) (2024-06-01T21:51:33Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。