論文の概要: Labels Matter More Than Models: Quantifying the Benefit of Supervised Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2511.16145v1
- Date: Thu, 20 Nov 2025 08:32:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.53338
- Title: Labels Matter More Than Models: Quantifying the Benefit of Supervised Time Series Anomaly Detection
- Title(参考訳): ラベルはモデルよりも重要: 監督された時系列異常検出の利点の定量化
- Authors: Zhijie Zhong, Zhiwen Yu, Kaixiang Yang, C. L. Philip Chen,
- Abstract要約: 時系列異常検出(TSAD)は、しばしばラベル不足によって制約される重要なデータマイニングタスクである。
現在の研究は、主に教師なし時系列異常検出に焦点を当てている。
本稿では,アーキテクチャの複雑さがTSADの最適経路である,という前提に挑戦する。
- 参考スコア(独自算出の注目度): 56.302586730134806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series anomaly detection (TSAD) is a critical data mining task often constrained by label scarcity. Consequently, current research predominantly focuses on Unsupervised Time-series Anomaly Detection (UTAD), relying on complex architectures to model normal data distributions. However, this approach often overlooks the significant performance gains available from limited anomaly labels achievable in practical scenarios. This paper challenges the premise that architectural complexity is the optimal path for TSAD. We conduct the first methodical comparison between supervised and unsupervised paradigms and introduce STAND, a streamlined supervised baseline. Extensive experiments on five public datasets demonstrate that: (1) Labels matter more than models: under a limited labeling budget, simple supervised models significantly outperform complex state-of-the-art unsupervised methods; (2) Supervision yields higher returns: the performance gain from minimal supervision far exceeds that from architectural innovations; and (3) Practicality: STAND exhibits superior prediction consistency and anomaly localization compared to unsupervised counterparts. These findings advocate for a data-centric shift in TSAD research, emphasizing label utilization over purely algorithmic complexity. The code is publicly available at https://github.com/EmorZz1G/STAND.
- Abstract(参考訳): 時系列異常検出(TSAD)は、しばしばラベル不足によって制約される重要なデータマイニングタスクである。
その結果、現在の研究では、非教師付き時系列異常検出(UTAD: Unsupervised Time-Series Anomaly Detection)に主に焦点が当てられ、通常のデータ分散をモデル化するための複雑なアーキテクチャに依存している。
しかし、このアプローチは、実用的なシナリオで達成可能な限定された異常ラベルから得られる大幅なパフォーマンス向上をしばしば見落としている。
本稿では,アーキテクチャの複雑さがTSADの最適経路である,という前提に挑戦する。
我々は、教師なしパラダイムと教師なしパラダイムの第一の方法論的比較を行い、合理化された教師付きベースラインであるSTANDを導入する。
1) ラベルがモデルよりも重要なこと: 限られたラベル付け予算の下では、単純な教師付きモデルは、複雑な最先端の非教師付き手法を著しく上回り、(2) スーパービジョンは、より高いリターンを得る: 最小監督によるパフォーマンス向上は、アーキテクチャ上の革新よりもはるかに多く、(3) 実用性: STANDは、教師なしモデルよりも優れた予測一貫性と異常なローカライゼーションを示す。
これらの知見は、TSAD研究におけるデータ中心のシフトを提唱し、純粋にアルゴリズム的な複雑さよりもラベルの利用を強調した。
コードはhttps://github.com/EmorZz1G/STANDで公開されている。
関連論文リスト
- Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time [60.341117019125214]
グラフ異常検出(GAD)における未確認正規pattErnsの修正のための,軽量かつプラグアンドプレイなテスト時間適応フレームワークを提案する。
意味的混乱に対処するために、シフトしたデータと元のデータとをグラフ属性レベルで整合させるグラフ整合器を用いる。
10個の実世界のデータセットに対する大規模な実験により、TUNEは事前学習されたGADモデルの合成パターンと実際の見えない正常パターンの両方への一般化性を著しく向上することが示された。
論文 参考訳(メタデータ) (2025-11-10T12:10:05Z) - Towards Foundation Models for Zero-Shot Time Series Anomaly Detection: Leveraging Synthetic Data and Relative Context Discrepancy [33.68487894996624]
時系列異常検出(TSAD)は重要な課題であるが、見えないデータに一般化するモデルを開発することは大きな課題である。
我々は、新しい事前学習パラダイムの上に構築されたTSADの新たな基盤モデルであるtextttTimeRCDを紹介した。
textttTimeRCD はゼロショット TSAD において,既存の汎用および異常固有の基盤モデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2025-09-25T14:05:15Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
異常検出は、医療や金融システムなど、さまざまな現実世界のアプリケーションにおいて重要な役割を担っている。
正規データと異常データの間の異常スコアの差を学習・拡大するために,スコア誘導正規化を用いた新しいスコアネットワークを提案する。
次に,スコア誘導型オートエンコーダ(SG-AE)を提案する。
論文 参考訳(メタデータ) (2021-09-10T06:14:53Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。