論文の概要: Robust detection of an entanglement transition in the projective transverse field Ising model
- arxiv url: http://arxiv.org/abs/2511.17370v1
- Date: Fri, 21 Nov 2025 16:36:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-24 18:08:19.11256
- Title: Robust detection of an entanglement transition in the projective transverse field Ising model
- Title(参考訳): 射影横場イジングモデルにおける絡み合い遷移のロバスト検出
- Authors: Felix Roser, Etienne M. Springer, Hans Peter Büchler, Nicolai Lang,
- Abstract要約: 絡み合い遷移は、射影測定と雑音の固有のランダム性のために実験的に観察することが困難である。
逆場イジングモデルの射影バージョンにおける絡み合いの遷移を検出するためのスケーラブルで耐雑音性のあるプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scalable and noise-resilient protocol for the detection of the entanglement transition in a projective version of the transverse field Ising model. Entanglement transitions are experimentally difficult to observe due to the inherent randomness of projective measurements and noise in large-scale experimental settings. Our approach combines error correction algorithms with classical shadow tomography to overcome both problems. This allows for experimentally accessible upper and lower bounds on the entanglement transition without postselection or full state tomography. These bounds remain robust under noise and their sharpness is a measure of the noise rate.
- Abstract(参考訳): 逆場イジングモデルの射影バージョンにおける絡み合いの遷移を検出するためのスケーラブルで耐雑音性のあるプロトコルを提案する。
絡み合い遷移は、大規模実験環境での射影測定とノイズの固有のランダム性のため、実験的に観察することが困難である。
提案手法は, 誤り訂正アルゴリズムと古典的影トモグラフィーを組み合わせることで, 両問題を克服する。
これにより、術後選択やフルステートトモグラフィーを使わずに、エンタングルメント遷移における上と下の境界を実験的にアクセスすることができる。
これらの境界は、ノイズの下では頑健であり、その鋭さはノイズ率の尺度である。
関連論文リスト
- Mitigating the Noise Shift for Denoising Generative Models via Noise Awareness Guidance [54.88271057438763]
ノイズアウェアネスガイダンス (NAG) は、事前に定義された騒音スケジュールと整合性を保つために、サンプリング軌道を明示的に制御する補正手法である。
NAGは一貫してノイズシフトを緩和し、主流拡散モデルの生成品質を大幅に改善する。
論文 参考訳(メタデータ) (2025-10-14T13:31:34Z) - Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions [10.287171164361608]
角投影の欠如は、再構成された画像の不完全なシノグラムやアーティファクトに繋がる。
本稿では, 平均回帰微分方程式(MR-SDE)を用いて, 角ビューの欠落を解消する拡散型フレームワークを提案する。
現実的な雑音下でのロバスト性を改善するために,推論時間不確実性を明示的にモデル化する新しいノイズ認識機構を提案する。
論文 参考訳(メタデータ) (2025-07-08T03:58:52Z) - Enhancing Sample Generation of Diffusion Models using Noise Level Correction [9.014666170540304]
提案手法は, 推定雑音レベルと雑音の真の距離を多様体に合わせることで, サンプル生成を向上する手法である。
具体的には,事前学習した騒音レベル補正ネットワークを導入し,騒音レベル推定を改良する。
実験結果から,本手法は,制約のない生成シナリオと制約のない生成シナリオの両方において,サンプルの品質を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-12-07T01:19:14Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
DNMOTは、複数のオブジェクト追跡のためのエンドツーエンドのトレーニング可能なDeNoising Transformerである。
具体的には、トレーニング中にノイズを伴って軌道を拡大し、エンコーダ・デコーダアーキテクチャのデノイング過程をモデルに学習させる。
我々はMOT17,MOT20,DanceTrackのデータセットについて広範な実験を行い,実験結果から,提案手法が従来の最先端手法よりも明確なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-09-09T04:40:01Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Hierarchical Disentangled Representation for Invertible Image Denoising
and Beyond [14.432771193620702]
画像の高周波部分にノイズが現れる傾向にあるという潜在観測に着想を得て,完全可逆復調法を提案する。
ノイズ画像は、可逆変換により、清浄な低周波およびハイブリッドな高周波部品に分解する。
このように、ノイズのない低周波部品と高周波部品とを逆にマージして、デノナイジングをトラクタブルにする。
論文 参考訳(メタデータ) (2023-01-31T01:24:34Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
トモグラフィー問題に対する遺伝的および機械学習アプローチの適用について検討する。
ニューラルネットワークベースのスキームは、リアルタイムにキャラクタリゼーションを必要とするアプリケーションにおいて、重要なスピードアップを提供する。
これらの結果は、より一般的な量子プロセスにおけるトモグラフィーアプローチの最適化の基礎となることを期待する。
論文 参考訳(メタデータ) (2022-10-27T11:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。