論文の概要: MultiDiffNet: A Multi-Objective Diffusion Framework for Generalizable Brain Decoding
- arxiv url: http://arxiv.org/abs/2511.18294v1
- Date: Sun, 23 Nov 2025 05:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.752046
- Title: MultiDiffNet: A Multi-Objective Diffusion Framework for Generalizable Brain Decoding
- Title(参考訳): MultiDiffNet: 一般化可能なブレインデコーディングのための多目的拡散フレームワーク
- Authors: Mengchun Zhang, Kateryna Shapovalenko, Yucheng Shao, Eddie Guo, Parusha Pradhan,
- Abstract要約: textitMultiDiffNetは、複数の目的に最適化されたコンパクトな潜在空間を学習することで、生成的拡張を完全に回避する拡散ベースのフレームワークである。
我々は、この空間から直接デコードし、主観的およびセッション不整合性評価を用いて、様々なニューラルデコードタスクにまたがる最先端の一般化を実現する。
- 参考スコア(独自算出の注目度): 1.6528632644902828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural decoding from electroencephalography (EEG) remains fundamentally limited by poor generalization to unseen subjects, driven by high inter-subject variability and the lack of large-scale datasets to model it effectively. Existing methods often rely on synthetic subject generation or simplistic data augmentation, but these strategies fail to scale or generalize reliably. We introduce \textit{MultiDiffNet}, a diffusion-based framework that bypasses generative augmentation entirely by learning a compact latent space optimized for multiple objectives. We decode directly from this space and achieve state-of-the-art generalization across various neural decoding tasks using subject and session disjoint evaluation. We also curate and release a unified benchmark suite spanning four EEG decoding tasks of increasing complexity (SSVEP, Motor Imagery, P300, and Imagined Speech) and an evaluation protocol that addresses inconsistent split practices in prior EEG research. Finally, we develop a statistical reporting framework tailored for low-trial EEG settings. Our work provides a reproducible and open-source foundation for subject-agnostic EEG decoding in real-world BCI systems.
- Abstract(参考訳): 脳波(EEG)からのニューラルデコーディングは、物体間変動の増大と、それを効果的にモデル化するための大規模データセットの欠如により、未確認領域への一般化が貧弱なため、基本的に制限されている。
既存の手法は、しばしば合成対象生成や単純化されたデータ拡張に頼っているが、これらの戦略はスケールや一般化に失敗する。
複数の目的に最適化されたコンパクトな潜在空間を学習することで、生成的拡張を完全に回避する拡散ベースのフレームワークである。
我々は、この空間から直接デコードし、主観的およびセッション不整合性評価を用いて、様々なニューラルデコードタスクにまたがる最先端の一般化を実現する。
また、複雑性を増大させる4つの脳波デコーディングタスク(SSVEP、Motor Imagery、P300、Imagided Speech)にまたがる統一ベンチマークスイートと、以前の脳波研究における矛盾する分割プラクティスに対処する評価プロトコルをキュレートし、リリースする。
最後に,低位脳波設定に適した統計報告フレームワークを開発する。
我々の研究は、実世界のBCIシステムにおける主題に依存しない脳波デコーディングのための再現可能なオープンソース基盤を提供する。
関連論文リスト
- Knowledge-Informed Neural Network for Complex-Valued SAR Image Recognition [51.03674130115878]
本稿では,新しい「圧縮集約圧縮」アーキテクチャ上に構築された軽量なフレームワークであるKnowledge-Informed Neural Network(KINN)を紹介する。
KINNはパラメータ効率の認識における最先端を確立し、データスカースとアウト・オブ・ディストリビューションのシナリオにおいて例外的な一般化を提供する。
論文 参考訳(メタデータ) (2025-10-23T07:12:26Z) - ECHO: Toward Contextual Seq2Seq Paradigms in Large EEG Models [28.18721116424753]
大規模脳波モデル(LEM)は、エンコーダ中心のアーキテクチャを大規模未ラベルデータに事前訓練し、普遍的な表現を抽出することでこの問題に対処する。
脳波モデリングをシーケンス・ツー・シーケンス・ラーニングとして再構成する新しいデコーダ中心のLEMパラダイムであるECHOを導入する。
ECHOは、最先端のシングルタスクEMをマルチタスク設定で一貫して上回り、より優れた一般化と適応性を示す。
論文 参考訳(メタデータ) (2025-09-26T16:37:34Z) - A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis [2.355460994057843]
本研究では,様々な信号タイプにまたがる最先端性能を実現する,新しい統合型深層学習フレームワークを提案する。
従来の研究とは異なり、将来予測能力を達成するために信号の複雑さを科学的に増加させ、最高の予測を導いた。
アーキテクチャには130MBのメモリとプロセスが10ミリ秒で必要であり、ローエンドデバイスやウェアラブルデバイスへのデプロイに適していることを示唆している。
論文 参考訳(メタデータ) (2025-07-16T21:38:10Z) - AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications [52.91583053243446]
非侵襲的なBrain-Computer Interface(BCI)は、人間の脳を外部デバイスに接続する安全でアクセスしやすい手段を提供する。
近年,自己指導型プレトレーニングの導入により,非侵襲的BCI研究の展望が変化しつつある。
AdaBrain-Benchは、広範囲にわたる非侵襲的BCIタスクにおける脳基盤モデルを評価するための標準化されたベンチマークである。
論文 参考訳(メタデータ) (2025-07-14T03:37:41Z) - CodeBrain: Towards Decoupled Interpretability and Multi-Scale Architecture for EEG Foundation Model [52.466542039411515]
EEGファウンデーションモデル(EFM)は、タスク固有のモデルのスケーラビリティ問題に対処するために登場した。
このギャップを埋めるために設計された2段階のEMFであるCodeBrainを紹介します。
第1段階では、異種時間・周波数の脳波信号を離散トークンに分解するTFDual-Tokenizerを導入する。
第2段階では、構造化されたグローバル畳み込みとスライディングウインドウの注意を結合したマルチスケールEEGSSMアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-06-10T17:20:39Z) - Large Cognition Model: Towards Pretrained EEG Foundation Model [0.0]
多様な脳波データセットと下流タスクをまたいだ一般化を目的としたトランスフォーマーベース基盤モデルを提案する。
本研究は, 神経科学, パーソナライズドメディカル, およびBCI技術の進歩を促進するための, 事前学習型脳波基盤モデルの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2025-02-11T04:28:10Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
次世代エッジインテリジェンスは、オフロード技術を通じて様々なアプリケーションに恩恵をもたらすことが期待されている。
従来のオフロードアーキテクチャは、不均一な制約、部分的な認識、不確実な一般化、トラクタビリティの欠如など、いくつかの問題に直面している。
我々は、これらの問題を解決するための10億以上のパラメータを持つLarge AI Model-Based Offloading (LAMBO)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:25:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。