論文の概要: PRADA: Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images
- arxiv url: http://arxiv.org/abs/2511.20068v1
- Date: Tue, 25 Nov 2025 08:40:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-26 17:37:04.363986
- Title: PRADA: Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images
- Title(参考訳): PRADA:確率比に基づく自己回帰画像の属性と検出
- Authors: Simon Damm, Jonas Ricker, Henning Petzka, Asja Fischer,
- Abstract要約: PRADAは、AR生成画像を確実に検出し、それらをそれぞれのソースモデルに属性付ける、シンプルで解釈可能なアプローチである。
実験により,PRADAは8つのクラス・ツー・イメージモデルと4つのテキスト・ツー・イメージモデルに対して高い効果を示した。
- 参考スコア(独自算出の注目度): 13.32283996437404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressive (AR) image generation has recently emerged as a powerful paradigm for image synthesis. Leveraging the generation principle of large language models, they allow for efficiently generating deceptively real-looking images, further increasing the need for reliable detection methods. However, to date there is a lack of work specifically targeting the detection of images generated by AR image generators. In this work, we present PRADA (Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images), a simple and interpretable approach that can reliably detect AR-generated images and attribute them to their respective source model. The key idea is to inspect the ratio of a model's conditional and unconditional probability for the autoregressive token sequence representing a given image. Whenever an image is generated by a particular model, its probability ratio shows unique characteristics which are not present for images generated by other models or real images. We exploit these characteristics for threshold-based attribution and detection by calibrating a simple, model-specific score function. Our experimental evaluation shows that PRADA is highly effective against eight class-to-image and four text-to-image models.
- Abstract(参考訳): 自己回帰(AR)画像生成は画像合成の強力なパラダイムとして最近登場した。
大規模言語モデルの生成原理を活用することで、視覚的にリアルに見える画像を効率的に生成し、信頼性の高い検出方法の必要性をさらに高めることができる。
しかし、現時点ではARイメージジェネレータが生成した画像の検出を特に対象とする作業が不足している。
本稿では, PRADA(Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images)を提案する。
鍵となる考え方は、与えられた画像を表す自己回帰トークンシーケンスに対して、モデルの条件および非条件確率の比率を検査することである。
ある画像が特定のモデルによって生成されるとき、その確率比は他のモデルや実際の画像によって生成された画像には存在しない特徴を示す。
我々は、これらの特徴を閾値に基づく属性と検出に利用し、単純なモデル固有スコア関数を校正する。
実験により,PRADAは8つのクラス・ツー・イメージモデルと4つのテキスト・ツー・イメージモデルに対して高い効果を示した。
関連論文リスト
- $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection [85.9202830503973]
視覚的自己回帰(AR)モデルは、離散トークン予測を通じて画像を生成する。
本稿では,離散分布離散性を考慮した量子化誤差(D$3$QE)を自己回帰画像検出に活用することを提案する。
論文 参考訳(メタデータ) (2025-10-07T13:02:27Z) - Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [86.69947123512836]
CoT(Chain-of-Thought)推論は、複雑な理解タスクに取り組むために大規模なモデルで広く研究されている。
自己回帰画像生成を促進するために,CoT推論の可能性について,初めて包括的調査を行った。
本稿では,自動回帰画像生成に特化したPARMとPARM++を提案する。
論文 参考訳(メタデータ) (2025-01-23T18:59:43Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Regeneration Based Training-free Attribution of Fake Images Generated by Text-to-Image Generative Models [41.996769550318206]
そこで本研究では,テキスト・ツー・イメージ・モデルによって生成された偽画像をソース・モデルに属性付けするためのトレーニング不要な手法を提案する。
テスト画像と候補画像の類似性を計算し、ランキングすることにより、画像のソースを決定することができる。
論文 参考訳(メタデータ) (2024-03-03T11:55:49Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-03-19T20:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。