論文の概要: A Fractional Variational Approach to Spectral Filtering Using the Fourier Transform
- arxiv url: http://arxiv.org/abs/2511.20675v1
- Date: Sat, 15 Nov 2025 12:42:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-07 19:06:32.325649
- Title: A Fractional Variational Approach to Spectral Filtering Using the Fourier Transform
- Title(参考訳): フーリエ変換を用いたスペクトルフィルタリングにおけるフラクショナル変分法
- Authors: Nelson H. T. Lemes, José Claudinei Ferreira, Higor V. M. Ferreira,
- Abstract要約: 蛍光信号とノイズの干渉は、ラマンスペクトル分析において重要な課題である。
画像復調法に類似した変分法にインスパイアされた本手法では,分数微分を伴う関数を最小化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interference of fluorescence signals and noise remains a significant challenge in Raman spectrum analysis, often obscuring subtle spectral features that are critical for accurate analysis. Inspired by variational methods similar to those used in image denoising, our approach minimizes a functional involving fractional derivatives to balance noise suppression with the preservation of essential chemical features of the signal, such as peak position, intensity, and area. The original problem is reformulated in the frequency domain through the Fourier transform, making the implementation simple and fast. In this work, we discuss the theoretical framework, practical implementation, and the advantages and limitations of this method in the context of {simulated} Raman data, as well as in image processing. The main contribution of this article is the combination of a variational approach in the frequency domain, the use of fractional derivatives, and the optimization of the {regularization parameter and} derivative order through the concept of Shannon entropy. This work explores how the fractional order, combined with the regularization parameter, affects noise removal and preserves the essential features of the spectrum {and image}. Finally, the study shows that the combination of the proposed strategies produces an efficient, robust, and easily implementable filter.
- Abstract(参考訳): 蛍光信号とノイズの干渉は、ラマンスペクトル分析において重要な課題であり、しばしば正確な分析に重要な微妙なスペクトル特徴を隠蔽する。
本手法は, 雑音抑制とピーク位置, 強度, 面積といった信号の基本化学的特徴の保存のバランスをとるために, 分数微分を伴う関数を最小化する。
元の問題はフーリエ変換によって周波数領域で再構成され、実装は単純かつ高速である。
本研究では,この手法の理論的枠組み,実践的実装,利点と限界を,画像処理だけでなく,<simulated> Raman データの文脈で論じる。
本稿の主な貢献は、周波数領域における変分的アプローチ、分数微分の使用、およびシャノンエントロピー(英語版)の概念による {regularization parameter and} derivative orderの最適化である。
この研究は、分数次数と正規化パラメータが組み合わさってノイズ除去にどのように影響し、スペクトル {and image} の本質的な特徴を保っているかを考察する。
最後に,提案手法を組み合わせることで,効率的な,堅牢で,実装が容易なフィルタが得られることを示す。
関連論文リスト
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
断片的なガイダンススキームを用いて,逆問題を解決するための新しい拡散型フレームワークが導入された。
提案手法は問題に依存しず,様々な逆問題に容易に適応できる。
このフレームワークは, (4時間), (8時間) の超分解能タスクに対して, (23%), (24%) および (24%) の無作為マスクを塗布する場合の (25%) の推論時間を短縮する。
論文 参考訳(メタデータ) (2025-07-22T19:35:14Z) - Robustifying Fourier Features Embeddings for Implicit Neural Representations [25.725097757343367]
Inlicit Neural Representation (INR) は、目標関数の対応する値に座標をマッピングすることで、連続関数を表現するためにニューラルネットワークを使用する。
INRは、様々な周波数を含むシーンを扱う際に、スペクトルバイアスとして知られる課題に直面している。
本稿では,多層パーセプトロン (MLP) を添加剤なしで使用することを提案する。
論文 参考訳(メタデータ) (2025-02-08T07:43:37Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
本稿では,ノイズプロセスの自己相関をサンプリングし,再構成するための量子センシングプロトコルを実験的に導入し,実証する。
ウォルシュノイズ分光法はスピンフリップパルスの単純な配列を利用してディジタルフィルタの完全基底を生成する。
ダイヤモンド中の単一窒素空孔中心の電子スピン上での核スピン浴により生じる有効磁場の自己相関関数を実験的に再構成した。
論文 参考訳(メタデータ) (2022-12-19T02:19:35Z) - Fourier Transform Noise Spectroscopy [5.508069835694671]
本研究では,自由帰納的減衰あるいはスピンエコー測定のフーリエ変換のみを利用する雑音分光法を提案する。
提案手法は幅広い量子プラットフォームに適用可能であり,量子デバイスのより正確なスペクトル解析を行うための簡単な経路を提供する。
論文 参考訳(メタデータ) (2022-10-01T22:20:10Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - Robust, Nonparametric, Efficient Decomposition of Spectral Peaks under
Distortion and Interference [0.0]
本稿では, 高速フーリエ変換を用いて, 周波数スペクトルのスペクトルピークの分解法を提案する。
スペクトルのピークを擬対称関数としてモデル化する。そこでは、距離が大きくなると中心周波数の周りの非増加的な振る舞いが制約となる。
我々のアプローチは、観測システムによって引き起こされる可能性のあるスペクトルの任意の歪み、干渉、ノイズに対してより堅牢である。
論文 参考訳(メタデータ) (2022-04-18T17:08:37Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
我々は、量子化 RFF が基礎となるカーネルの高精度な近似を可能にすることを証明した。
量子化 RFF はさらに圧縮され,メモリ使用量と精度のトレードオフに優れることを示す。
本手法は,この文脈におけるアート量子化手法の他の状態と比較し,いくつかの機械学習タスクにおいて,提案手法の性能を実証的に示す。
論文 参考訳(メタデータ) (2021-06-04T17:24:47Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。