論文の概要: Robustifying Fourier Features Embeddings for Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2502.05482v1
- Date: Sat, 08 Feb 2025 07:43:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:15.547833
- Title: Robustifying Fourier Features Embeddings for Implicit Neural Representations
- Title(参考訳): 含意神経表現のためのロバスト化フーリエ特徴埋め込み
- Authors: Mingze Ma, Qingtian Zhu, Yifan Zhan, Zhengwei Yin, Hongjun Wang, Yinqiang Zheng,
- Abstract要約: Inlicit Neural Representation (INR) は、目標関数の対応する値に座標をマッピングすることで、連続関数を表現するためにニューラルネットワークを使用する。
INRは、様々な周波数を含むシーンを扱う際に、スペクトルバイアスとして知られる課題に直面している。
本稿では,多層パーセプトロン (MLP) を添加剤なしで使用することを提案する。
- 参考スコア(独自算出の注目度): 25.725097757343367
- License:
- Abstract: Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function, with applications e.g., inverse graphics. However, INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies. To overcome spectral bias, the most common approach is the Fourier features-based methods such as positional encoding. However, Fourier features-based methods will introduce noise to output, which degrades their performances when applied to downstream tasks. In response, this paper initially hypothesizes that combining multi-layer perceptrons (MLPs) with Fourier feature embeddings mutually enhances their strengths, yet simultaneously introduces limitations inherent in Fourier feature embeddings. By presenting a simple theorem, we validate our hypothesis, which serves as a foundation for the design of our solution. Leveraging these insights, we propose the use of multi-layer perceptrons (MLPs) without additive
- Abstract(参考訳): Implicit Neural Representations (INR) は、ニューラルネットワークを用いて、ターゲット関数の対応する値に座標をマッピングすることで、連続関数を表現する。
しかし、INRは様々な周波数を含むシーンを扱う際に、スペクトルバイアスとして知られる課題に直面している。
スペクトルバイアスを克服するため、最も一般的なアプローチは位置符号化のようなフーリエ特徴に基づく手法である。
しかし、Fourier機能ベースのメソッドは出力にノイズを導入し、下流タスクに適用するとパフォーマンスが低下する。
本論文は, 当初, 多層パーセプトロン (MLP) とフーリエ特徴埋め込み (Fourier feature embeddings) を組み合わせることで, それらの強度を相互に向上するが, 同時にフーリエ特徴埋め込みに固有の制限を導入することを仮定する。
簡単な定理を提示することにより、解の設計の基礎となる仮説を検証できる。
これらの知見を活かした多層パーセプトロン(MLP)の添加性のない利用を提案する。
関連論文リスト
- Robust Fourier Neural Networks [1.0589208420411014]
フーリエ埋込層の後, 単純な対角層を導入することにより, ネットワークの騒音測定がより堅牢になることを示す。
特定の条件下では,フーリエ関数の非線形関数の雑音混合である関数も学習することができる。
論文 参考訳(メタデータ) (2024-09-03T16:56:41Z) - QFF: Quantized Fourier Features for Neural Field Representations [28.82293263445964]
我々は、QFF(Quantized Fourier Features)を用いることで、モデルのサイズが小さくなり、トレーニングが速くなり、複数のアプリケーションの品質が向上することを示した。
QFFは簡単にコーディングでき、高速に計算でき、多くのニューラルネットワーク表現に加えてシンプルなドロップインとして機能する。
論文 参考訳(メタデータ) (2022-12-02T00:11:22Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
Incrmental Fourier Neural Operator (iFNO)を導入し、モデルが使用する周波数モードの数を徐々に増加させる。
iFNOは、各種データセット間の一般化性能を維持したり改善したりしながら、トレーニング時間を短縮する。
提案手法は,既存のフーリエニューラル演算子に比べて20%少ない周波数モードを用いて,10%低いテスト誤差を示すとともに,30%高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-28T09:57:15Z) - Deep Fourier Up-Sampling [100.59885545206744]
フーリエ領域のアップサンプリングは、そのような局所的な性質に従わないため、より難しい。
これらの問題を解決するために理論的に健全なDeep Fourier Up-Sampling (FourierUp)を提案する。
論文 参考訳(メタデータ) (2022-10-11T06:17:31Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
本稿では,脳神経信号モデリングと再構成作業を容易にするためのコンパクトな表現として,ファサール埋め込みフィールドemphPREFを提案する。
実験の結果,PreFをベースとしたニューラル信号処理技術は,2次元画像補完,3次元SDF表面回帰,5次元放射野再構成と同等であることがわかった。
論文 参考訳(メタデータ) (2022-05-26T17:43:03Z) - Seeing Implicit Neural Representations as Fourier Series [13.216389226310987]
Inlicit Neural Representation (INR)は低次元問題領域における高周波関数を表現するために多層パーセプトロンを使用する。
これらの表現は、複雑な3Dオブジェクトやシーンに関連するタスクについて、最先端の結果を得た。
この研究は2つの方法間の接続を分析し、フーリエ写像されたパーセプトロンが構造的に1つの隠蔽層SIRENと似ていることを示す。
論文 参考訳(メタデータ) (2021-09-01T08:40:20Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
我々は、量子化 RFF が基礎となるカーネルの高精度な近似を可能にすることを証明した。
量子化 RFF はさらに圧縮され,メモリ使用量と精度のトレードオフに優れることを示す。
本手法は,この文脈におけるアート量子化手法の他の状態と比較し,いくつかの機械学習タスクにおいて,提案手法の性能を実証的に示す。
論文 参考訳(メタデータ) (2021-06-04T17:24:47Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
フーリエスパース集合関数を学習するための新しいアルゴリズム群を提案する。
Walsh-Hadamard変換に焦点をあてた他の研究とは対照的に、我々の新しいアルゴリズムは最近導入された非直交フーリエ変換で機能する。
いくつかの実世界のアプリケーションで有効性を示す。
論文 参考訳(メタデータ) (2020-10-01T14:31:59Z) - Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains [69.62456877209304]
単純なフーリエ特徴写像を通して入力点を渡すことで、多層パーセプトロンが高周波関数を学習できることを示す。
結果は、最先端の結果を達成するコンピュータビジョンとグラフィックの進歩に光を当てた。
論文 参考訳(メタデータ) (2020-06-18T17:59:11Z) - Fourier Neural Networks as Function Approximators and Differential
Equation Solvers [0.456877715768796]
活性化と損失関数の選択は、フーリエ級数展開を密接に再現する結果をもたらす。
我々はこのFNNを自然周期的滑らかな関数と断片的連続周期関数で検証する。
現在のアプローチの主な利点は、トレーニング領域外のソリューションの有効性、トレーニングされたモデルの解釈可能性、使用の単純さである。
論文 参考訳(メタデータ) (2020-05-27T00:30:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。