論文の概要: You Can Trust Your Clustering Model: A Parameter-free Self-Boosting Plug-in for Deep Clustering
- arxiv url: http://arxiv.org/abs/2511.21193v1
- Date: Wed, 26 Nov 2025 09:16:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.033134
- Title: You Can Trust Your Clustering Model: A Parameter-free Self-Boosting Plug-in for Deep Clustering
- Title(参考訳): クラスタリングモデルを信頼できる:ディープクラスタリングのためのパラメータフリーなセルフブートプラグイン
- Authors: Hanyang Li, Yuheng Jia, Hui Liu, Junhui Hou,
- Abstract要約: DCBoostはパラメータフリーのプラグインで、現在のディープクラスタリングモデルのグローバルな特徴構造を強化するように設計されている。
本手法は, クラスタリング性能を効果的に向上することを目的としている。
- 参考スコア(独自算出の注目度): 73.48306836608124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent deep clustering models have produced impressive clustering performance. However, a common issue with existing methods is the disparity between global and local feature structures. While local structures typically show strong consistency and compactness within class samples, global features often present intertwined boundaries and poorly separated clusters. Motivated by this observation, we propose DCBoost, a parameter-free plug-in designed to enhance the global feature structures of current deep clustering models. By harnessing reliable local structural cues, our method aims to elevate clustering performance effectively. Specifically, we first identify high-confidence samples through adaptive $k$-nearest neighbors-based consistency filtering, aiming to select a sufficient number of samples with high label reliability to serve as trustworthy anchors for self-supervision. Subsequently, these samples are utilized to compute a discriminative loss, which promotes both intra-class compactness and inter-class separability, to guide network optimization. Extensive experiments across various benchmark datasets showcase that our DCBoost significantly improves the clustering performance of diverse existing deep clustering models. Notably, our method improves the performance of current state-of-the-art baselines (e.g., ProPos) by more than 3% and amplifies the silhouette coefficient by over $7\times$. Code is available at <https://github.com/l-h-y168/DCBoost>.
- Abstract(参考訳): 最近のディープクラスタリングモデルでは、素晴らしいクラスタリング性能を実現している。
しかし、既存の手法の共通する問題は、グローバルな特徴構造とローカルな特徴構造との相違である。
局所的な構造は通常、クラスサンプル内で強い一貫性とコンパクトさを示すが、大域的な特徴は、しばしば相互に絡み合った境界と、分離されていないクラスタが存在する。
本研究の目的は,現在の深層クラスタリングモデルのグローバルな特徴構造を強化するために,パラメータフリーなプラグインDCBoostを提案することである。
本手法は, クラスタリング性能を効果的に向上することを目的としている。
具体的には、まずアダプティブ$k$-nearest近辺の一貫性フィルタを用いて高信頼度サンプルを同定し、高いラベル信頼性を持つ十分な数のサンプルを選択し、自己監督のための信頼できるアンカーとして機能することを目的とする。
その後、これらのサンプルを用いて識別的損失を計算し、クラス内コンパクト性とクラス間分離性の両方を促進し、ネットワーク最適化を導出する。
様々なベンチマークデータセットにわたる大規模な実験により、我々のDCBoostは、様々な既存のディープクラスタリングモデルのクラスタリング性能を大幅に改善することを示した。
特に,現在の最先端ベースライン(例えばProPos)の性能を3%以上改善し,シルエット係数を7\times$で増幅する。
コードは <https://github.com/l-h-y168/DCBoost> で公開されている。
関連論文リスト
- Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency [57.961869351897384]
効率的な画像クラスタリングのためのクロスモーダルなセマンティック一貫性に基づくフレームワークを提案する。
当社のフレームワークはまず,クロスモーダルセマンティック一貫性を通じて,強力な基盤を構築します。
最初の段階では、トレーニング済みモデルのリッチなセマンティクスに合わせて、軽量クラスタリングヘッドをトレーニングします。
第2段階では、自己強化微調整戦略を導入する。
論文 参考訳(メタデータ) (2025-08-02T08:12:57Z) - Fuzzy Cluster-Aware Contrastive Clustering for Time Series [1.435214708535728]
従来の教師なしクラスタリング手法は、しばしば時系列データの複雑な性質を捉えるのに失敗する。
本稿では,表現学習とクラスタリングを協調的に最適化するファジィクラスタ対応コントラストクラスタリングフレームワーク(FCACC)を提案する。
本稿では,時系列データの様々な特徴を活用して特徴抽出を強化するために,新しい3視点データ拡張手法を提案する。
論文 参考訳(メタデータ) (2025-03-28T07:59:23Z) - Towards Learnable Anchor for Deep Multi-View Clustering [49.767879678193005]
本稿では,線形時間でクラスタリングを行うDeep Multi-view Anchor Clustering (DMAC)モデルを提案する。
最適なアンカーを用いて、全サンプルグラフを計算し、クラスタリングのための識別的埋め込みを導出する。
いくつかのデータセットの実験では、最先端の競合に比べてDMACの性能と効率が優れていることが示されている。
論文 参考訳(メタデータ) (2025-03-16T09:38:11Z) - Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
本稿では,自己教師付き事前学習モデルと潜在特徴分布最適化に基づく画像クラスタリングアルゴリズムを提案する。
我々の手法は最新のクラスタリングアルゴリズムより優れ、最先端のクラスタリング結果が得られる。
論文 参考訳(メタデータ) (2024-08-04T04:08:21Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
我々は、アンダーラインELCRecと呼ばれる新しい意図学習手法を提案する。
振る舞い表現学習をUnderlineEnd-to-end UnderlineLearnable UnderlineClusteringフレームワークに統合する。
1億3000万ページビューの産業レコメンデーションシステムに本手法をデプロイし,有望な結果を得る。
論文 参考訳(メタデータ) (2024-01-11T15:22:55Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。