論文の概要: The Directed Prediction Change - Efficient and Trustworthy Fidelity Assessment for Local Feature Attribution Methods
- arxiv url: http://arxiv.org/abs/2511.21363v1
- Date: Wed, 26 Nov 2025 13:11:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.103098
- Title: The Directed Prediction Change - Efficient and Trustworthy Fidelity Assessment for Local Feature Attribution Methods
- Title(参考訳): 直接予測変化 -局所的特徴帰属法における効率的かつ信頼性の高い忠実度評価-
- Authors: Kevin Iselborn, David Dembinsky, Adriano Lucieri, Andreas Dengel,
- Abstract要約: ハイテイクな医療環境では、臨床医と規制官はモデルの意思決定プロセスを忠実に反映した説明を必要とする。
Infidelityのような既存の忠実度指標はモンテカルロ近似に依存している。
本研究は,局所的特徴帰属法の忠実度を評価するための新しい指標を提案する。
- 参考スコア(独自算出の注目度): 4.0876210638659725
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The utility of an explanation method critically depends on its fidelity to the underlying machine learning model. Especially in high-stakes medical settings, clinicians and regulators require explanations that faithfully reflect the model's decision process. Existing fidelity metrics such as Infidelity rely on Monte Carlo approximation, which demands numerous model evaluations and introduces uncertainty due to random sampling. This work proposes a novel metric for evaluating the fidelity of local feature attribution methods by modifying the existing Prediction Change (PC) metric within the Guided Perturbation Experiment. By incorporating the direction of both perturbation and attribution, the proposed Directed Prediction Change (DPC) metric achieves an almost tenfold speedup and eliminates randomness, resulting in a deterministic and trustworthy evaluation procedure that measures the same property as local Infidelity. DPC is evaluated on two datasets (skin lesion images and financial tabular data), two black-box models, seven explanation algorithms, and a wide range of hyperparameters. Across $4\,744$ distinct explanations, the results demonstrate that DPC, together with PC, enables a holistic and computationally efficient evaluation of both baseline-oriented and local feature attribution methods, while providing deterministic and reproducible outcomes.
- Abstract(参考訳): 説明法の有用性は、基礎となる機械学習モデルに対する忠実さに大きく依存する。
特にハイテイクな医療環境では、臨床医や規制当局がモデルの決定過程を忠実に反映した説明を必要とする。
Infidelityのような既存の忠実度指標はモンテカルロ近似に依存しており、多数のモデル評価を必要とし、ランダムサンプリングによる不確実性を導入する。
本研究は, 誘導摂動実験において, 既存の予測変化(PC)測定値を変更することにより, 局所的特徴帰属法の忠実度を評価するための新しい指標を提案する。
摂動と帰属の両方の方向を組み込むことで、提案したDPC(Directed Prediction Change)メトリックは、ほぼ10倍のスピードアップを実現し、ランダム性を排除し、決定論的かつ信頼性の高い評価手順をもたらす。
DPCは2つのデータセット(皮膚病変画像と財務表データ)、2つのブラックボックスモデル、7つの説明アルゴリズム、幅広いハイパーパラメータで評価される。
4 ,744$ の異なる説明は、PC とともに、DPC は、決定論的かつ再現可能な結果を提供しながら、ベースライン指向および局所的特徴属性法の両方の総合的かつ計算学的に効率的な評価を可能にすることを示した。
関連論文リスト
- MMDCP: A Distribution-free Approach to Outlier Detection and Classification with Coverage Guarantees and SCW-FDR Control [6.429952624399788]
ラベルシフト下でのマルチクラス分類と外乱検出のための統一的なフレームワークを提案する。
修正マハラノビス距離等角予測(MMDCP)は、クラス固有の距離測度と完全な等角予測を組み合わせてスコア関数を構築する。
オラクルと経験的コンフォーマルな$p$-値のギャップを初めて理論的に評価し、クラスワイド偽発見率(CW-FDR)の有効なカバレッジと効果的な制御を確実にする。
論文 参考訳(メタデータ) (2025-11-15T03:48:44Z) - ARISE: An Adaptive Resolution-Aware Metric for Test-Time Scaling Evaluation in Large Reasoning Models [102.4511331368587]
ARISE(Adaptive Resolution-Aware Scaling Evaluation)は、大規模推論モデルの試験時間スケーリングの有効性を評価するために設計された新しい尺度である。
我々は、様々な領域にわたる最先端の推論モデルを評価する包括的な実験を行う。
論文 参考訳(メタデータ) (2025-10-07T15:10:51Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
この研究は、変数推論を用いて、意見力学 ABM のパラメータを推定する。
我々は推論プロセスを自動微分に適した最適化問題に変換する。
提案手法は, シミュレーションベース法とMCMC法より, マクロ的(有界信頼区間とバックファイア閾値)と微視的(200ドル, エージェントレベルの役割)の両方を正確に推定する。
論文 参考訳(メタデータ) (2024-03-08T14:45:18Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
マルコフ決定過程(MDP)の動的モデルのオフライン推定は非自明な作業である。
近年の研究では、密度推定法に依存する専門家誘導パイプラインが、決定論的環境において、この構造を効果的に検出できることが示されている。
学習したMDPを解き、実際の環境に最適化されたポリシーを適用すると、前者の結果が性能改善につながることを示す。
論文 参考訳(メタデータ) (2021-12-18T14:32:32Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
医療や教育などの観察データへのオフライン強化学習の適用においては、観察された行動は観測されていない要因に影響される可能性があるという一般的な懸念がある。
ここでは、部分的に観察されたマルコフ決定過程(POMDP)における非政治評価を考慮し、この問題に取り組む。
我々は、近位因果推論の枠組みをPOMDP設定に拡張し、識別が可能となる様々な設定を提供する。
論文 参考訳(メタデータ) (2021-10-28T17:46:14Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。