論文の概要: Bridging the Unavoidable A Priori: A Framework for Comparative Causal Modeling
- arxiv url: http://arxiv.org/abs/2511.21636v1
- Date: Wed, 26 Nov 2025 18:08:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.236635
- Title: Bridging the Unavoidable A Priori: A Framework for Comparative Causal Modeling
- Title(参考訳): 避けられないA優先順位のブリッジ:比較因果モデリングのためのフレームワーク
- Authors: Peter S. Hovmand, Kari O'Donnell, Callie Ogland-Hand, Brian Biroscak, Douglas D. Gunzler,
- Abstract要約: 責任あるAI/MLの支持者は、システムダイナミクスのより豊かな因果モデルを描く方法を模索している。
本稿では,システム力学と構造方程式のモデリングを共通な数学的枠組みにまとめる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI/ML models have rapidly gained prominence as innovations for solving previously unsolved problems and their unintended consequences from amplifying human biases. Advocates for responsible AI/ML have sought ways to draw on the richer causal models of system dynamics to better inform the development of responsible AI/ML. However, a major barrier to advancing this work is the difficulty of bringing together methods rooted in different underlying assumptions (i.e., Dana Meadow's "the unavoidable a priori"). This paper brings system dynamics and structural equation modeling together into a common mathematical framework that can be used to generate systems from distributions, develop methods, and compare results to inform the underlying epistemology of system dynamics for data science and AI/ML applications.
- Abstract(参考訳): AI/MLモデルは、未解決の問題を解決するイノベーションと、人間の偏見を増幅することによる意図しない結果として、急速に注目を集めている。
責任あるAI/MLの支持者は、責任あるAI/MLの開発をよりよく知るために、システムダイナミクスのより豊かな因果モデルを引き出す方法を模索している。
しかし、この研究を進める上で大きな障壁は、異なる前提(すなわち、ダナ・メドウの「避けられない先駆者」)に根ざしたメソッドをまとめることの難しさである。
本稿では,システム力学と構造方程式を結合して,分散系からシステムを生成し,手法を開発し,その結果を比較し,データ科学やAI/ML応用のためのシステム力学の基盤となる認識論を知らせる,共通の数学的枠組みを提案する。
関連論文リスト
- Flexible Swarm Learning May Outpace Foundation Models in Essential Tasks [0.0]
ファウンデーションモデルはAIを急速に進歩させ、彼らの決定が現実世界のドメインにおける人間の戦略を上回るかどうかという疑問を提起している。
一般的な課題は、複雑なシステムを動的環境に適応させることである。
モノリシックな基盤モデルは、それを克服する上で概念的な限界に直面している、と私たちは主張する。
対話型小型エージェントネットワーク(SAN)の分散アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-10-07T18:10:31Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - Adapting Physics-Informed Neural Networks to Improve ODE Optimization in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。