論文の概要: Modeling Quantum Autoencoder Trainable Kernel for IoT Anomaly Detection
- arxiv url: http://arxiv.org/abs/2511.21932v1
- Date: Wed, 26 Nov 2025 21:45:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.306674
- Title: Modeling Quantum Autoencoder Trainable Kernel for IoT Anomaly Detection
- Title(参考訳): IoT異常検出のための量子オートエンコーダトレーニングカーネルのモデリング
- Authors: Swathi Chandrasekhar, Shiva Raj Pokhrel, Swati Kumari, Navneet Singh,
- Abstract要約: 本稿では,ネットワークトラフィックを潜在表現に圧縮し,侵入検出に量子支援ベクトル分類を用いる量子オートエンコーダフレームワークを提案する。
この研究は、量子機械学習を、現実のサイバーセキュリティの課題に対して実行可能な、ハードウェア対応のソリューションとして確立している。
- 参考スコア(独自算出の注目度): 5.822890076771093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Escalating cyber threats and the high-dimensional complexity of IoT traffic have outpaced classical anomaly detection methods. While deep learning offers improvements, computational bottlenecks limit real-time deployment at scale. We present a quantum autoencoder (QAE) framework that compresses network traffic into discriminative latent representations and employs quantum support vector classification (QSVC) for intrusion detection. Evaluated on three datasets, our approach achieves improved accuracy on ideal simulators and on the IBM Quantum hardware demonstrating practical quantum advantage on current NISQ devices. Crucially, moderate depolarizing noise acts as implicit regularization, stabilizing training and enhancing generalization. This work establishes quantum machine learning as a viable, hardware-ready solution for real-world cybersecurity challenges.
- Abstract(参考訳): サイバー脅威のエスカレートとIoTトラフィックの高次元複雑さは、古典的な異常検出方法を上回っている。
ディープラーニングは改善を提供するが、計算ボトルネックは大規模なリアルタイムデプロイメントを制限する。
本稿では、ネットワークトラフィックを識別潜在表現に圧縮し、侵入検出に量子支援ベクトル分類(QSVC)を用いる量子オートエンコーダ(QAE)フレームワークを提案する。
提案手法は, 理想的なシミュレータやIBM Quantumハードウェア上での精度向上を実現し, 現行のNISQデバイスに対して実用的な量子優位性を示す。
重要なことに、中程度の偏極ノイズは暗黙の正則化、訓練の安定化、一般化の強化として機能する。
この研究は、量子機械学習を、現実のサイバーセキュリティの課題に対して実行可能な、ハードウェア対応のソリューションとして確立している。
関連論文リスト
- Towards Quantum Enhanced Adversarial Robustness with Rydberg Reservoir Learning [45.92935470813908]
量子コンピューティング貯水池(QRC)は、量子多体系に固有の高次元非線形力学を利用する。
近年の研究では、変動回路に基づく摂動量子は逆数の影響を受けやすいことが示されている。
QR学習モデルにおける対向的堅牢性の最初の体系的評価について検討する。
論文 参考訳(メタデータ) (2025-10-15T12:17:23Z) - TensorHyper-VQC: A Tensor-Train-Guided Hypernetwork for Robust and Scalable Variational Quantum Computing [50.95799256262098]
量子機械学習のための新しいテンソルトレイン(TT)誘導ハイパーネットワークフレームワークであるHyper-VQCを紹介する。
我々のフレームワークは、量子回路パラメータの生成を古典的なTTネットワークに委譲し、量子ハードウェアから最適化を効果的に分離する。
これらの結果から、Hyper-VQCは、短期デバイス上での実用的な量子機械学習を促進するためのスケーラブルで耐雑音性のあるフレームワークとして位置づけられる。
論文 参考訳(メタデータ) (2025-08-01T23:37:55Z) - Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses [2.089191490381739]
量子機械学習(QML)は、量子コンピューティングと古典的な機械学習を統合して、分類、回帰、生成タスクを解決する。
本章では、クラウドベースのデプロイメント、ハイブリッドアーキテクチャ、量子生成モデルにおける脆弱性に焦点を当て、QMLシステム特有の敵の脅威について検討する。
論文 参考訳(メタデータ) (2025-06-27T01:19:49Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [50.95799256262098]
変分量子回路(VQC)は量子機械学習を約束するが、表現性、訓練性、耐雑音性の課題に直面している。
本稿では,VQCが学習中に古典多層パーセプトロンの第一層重みを生成するハイブリッドアーキテクチャであるVQC-MLPNetを提案する。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - Quantum-driven Zero Trust Framework with Dynamic Anomaly Detection in 7G Technology: A Neural Network Approach [0.0]
セキュリティ強化のためのQNN-ZTF(Quantum Neural Network-Enhanced Zero Trust Framework)を提案する。
セキュリティ強化のためにZero Trust Architecture, Intrusion Detection Systems, Quantum Neural Networks(QNN)を統合した。
サイバー脅威の軽減効果が向上し, 偽陽性と応答時間を減らすための枠組みの有効性が示された。
論文 参考訳(メタデータ) (2025-02-11T18:59:32Z) - Learning agent-based approach to the characterization of open quantum systems [0.08496348835248901]
我々は,オープンな量子モデル学習エージェント (oQMLA) フレームワークを導入し,Louvillianフォーマリズムによるマルコフ雑音を考慮した。
ハミルトン作用素とジャンプ作用素を同時に学習することにより、oQMLAは独立に系のコヒーレント力学と非コヒーレント力学の両方を捉える。
複雑化のシミュレーションシナリオにおける本実装の有効性を検証し,ハードウェアによる測定誤差に対するロバスト性を示す。
論文 参考訳(メタデータ) (2025-01-09T16:25:17Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。