論文の概要: Fault-Tolerant MARL for CAVs under Observation Perturbations for Highway On-Ramp Merging
- arxiv url: http://arxiv.org/abs/2511.23193v1
- Date: Fri, 28 Nov 2025 13:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.916231
- Title: Fault-Tolerant MARL for CAVs under Observation Perturbations for Highway On-Ramp Merging
- Title(参考訳): ハイウェイオンランプマージ観測におけるCAVの耐故障性MARL
- Authors: Yuchen Shi, Huaxin Pei, Yi Zhang, Danya Yao,
- Abstract要約: MARL(Multi Agent Reinforcement Learning)は、コネクテッド・アンド・オートマチック・ビークル(CAV)間の協調運転を可能にする重要な約束を持っている
MARLの実用的応用は、臨界、すなわち断層に対する耐障害性の不足によって妨げられている。
2つのキーエージェントを組み込んだ協調車載用耐故障性MARL法を提案する。
- 参考スコア(独自算出の注目度): 7.534662813763853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Reinforcement Learning (MARL) holds significant promise for enabling cooperative driving among Connected and Automated Vehicles (CAVs). However, its practical application is hindered by a critical limitation, i.e., insufficient fault tolerance against observational faults. Such faults, which appear as perturbations in the vehicles' perceived data, can substantially compromise the performance of MARL-based driving systems. Addressing this problem presents two primary challenges. One is to generate adversarial perturbations that effectively stress the policy during training, and the other is to equip vehicles with the capability to mitigate the impact of corrupted observations. To overcome the challenges, we propose a fault-tolerant MARL method for cooperative on-ramp vehicles incorporating two key agents. First, an adversarial fault injection agent is co-trained to generate perturbations that actively challenge and harden the vehicle policies. Second, we design a novel fault-tolerant vehicle agent equipped with a self-diagnosis capability, which leverages the inherent spatio-temporal correlations in vehicle state sequences to detect faults and reconstruct credible observations, thereby shielding the policy from misleading inputs. Experiments in a simulated highway merging scenario demonstrate that our method significantly outperforms baseline MARL approaches, achieving near-fault-free levels of safety and efficiency under various observation fault patterns.
- Abstract(参考訳): MARL(Multi-Agent Reinforcement Learning)は、コネクテッド・アンド・オートマチック・ビークル(CAV)間の協調運転を可能にする重要な約束を持っている。
しかし、その実用的応用は、限界、すなわち観測断層に対する耐障害性の不足によって妨げられている。
車両の認識データに摂動として現れるこのような障害は、MARLベースの運転システムの性能を著しく損なう可能性がある。
この問題に対処する主な課題は2つある。
1つは、訓練中の方針を効果的に強調する敵の摂動を発生させ、もう1つは、腐敗した観測の影響を軽減する能力を備えた車両を装備することである。
この課題を克服するために,2つのキーエージェントを組み込んだ協調車載用耐故障性MARL法を提案する。
第一に、対向的障害注入剤を併用して、車両ポリシーに積極的に挑戦し、強化する摂動を生成する。
第2に, 自己診断機能を備えた新規耐故障車両エージェントを設計し, 車両状態系列の時空間的関係を利用して故障を検出し, 信頼性のある観測を再構築し, 誤った入力からポリシーを守る。
シミュレーションされたハイウェイマージ実験により,本手法がベースラインMARL手法を著しく上回り,各種の観測断層パターン下での安全性と効率のほぼ自由度を実現していることが示された。
関連論文リスト
- From Narratives to Probabilistic Reasoning: Predicting and Interpreting Drivers' Hazardous Actions in Crashes Using Large Language Model [3.3457493284891338]
2車線の事故は、道路事故の約70%を占める。
Driver Hazardous Action (DHA)データは、一貫性のない、労働集約的な手動コーディングプラクティスによって制限される。
本稿では,微調整された大規模言語モデルを利用して,テキストによるクラッシュ物語からDHAを自動的に推測する,革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-14T21:35:47Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [87.7482313774741]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay [6.0111084468944]
遅延状態推論・安全制御(L3IS)エージェントを用いたレーンキーピング・レーンチェンジについて紹介する。
L3ISは、周囲の車両の意図や運転スタイルに関する包括的な知識を必要とせずに、オンランプのマージ作業を安全に行うように設計されている。
本稿では,観測遅延を考慮に入れたAL3ISというエージェントを改良し,実環境においてより堅牢な決定を行えるようにした。
論文 参考訳(メタデータ) (2024-03-18T15:02:46Z) - Two-step dynamic obstacle avoidance [0.0]
本稿では、教師付きおよび強化学習(RL)を組み合わせることにより、動的障害物回避(DOA)タスクを扱うための2段階アーキテクチャを提案する。
最初のステップでは、リカレントニューラルネットワークを用いて障害物の衝突リスク(CR)を推定するデータ駆動アプローチを導入する。
第2ステップでは、これらのCR推定値をRLエージェントの観察空間に含め、その状況意識を高める。
論文 参考訳(メタデータ) (2023-11-28T14:55:50Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Learned Risk Metric Maps for Kinodynamic Systems [54.49871675894546]
本研究では,高次元力学系のコヒーレントリスクメトリクスをリアルタイムに推定するための学習型リスクメトリクスマップを提案する。
LRMMモデルは設計と訓練が簡単で、障害セットの手続き的生成、状態と制御のサンプリング、および関数近似器の教師付きトレーニングのみを必要とする。
論文 参考訳(メタデータ) (2023-02-28T17:51:43Z) - Towards Robust On-Ramp Merging via Augmented Multimodal Reinforcement
Learning [9.48157144651867]
本稿では,CAVのマルチモーダル強化学習によるロバスト・オン・ランプ・マージに対する新しいアプローチを提案する。
具体的には、運転安全性、快適運転行動、交通効率を考慮に入れ、マークフ決定プロセス(MDP)としてオンランプマージ問題を定式化する。
信頼性の高い統合操作を実現するため,BSMと監視画像を同時に活用してマルチモーダル観測を行う。
論文 参考訳(メタデータ) (2022-07-21T16:34:57Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。