論文の概要: From Narratives to Probabilistic Reasoning: Predicting and Interpreting Drivers' Hazardous Actions in Crashes Using Large Language Model
- arxiv url: http://arxiv.org/abs/2510.13002v1
- Date: Tue, 14 Oct 2025 21:35:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.429515
- Title: From Narratives to Probabilistic Reasoning: Predicting and Interpreting Drivers' Hazardous Actions in Crashes Using Large Language Model
- Title(参考訳): ナラティブから確率的推論:大規模言語モデルを用いたクレーシュにおける運転者の有害行動の予測と解釈
- Authors: Boyou Chen, Gerui Xu, Zifei Wang, Huizhong Guo, Ananna Ahmed, Zhaonan Sun, Zhen Hu, Kaihan Zhang, Shan Bao,
- Abstract要約: 2車線の事故は、道路事故の約70%を占める。
Driver Hazardous Action (DHA)データは、一貫性のない、労働集約的な手動コーディングプラクティスによって制限される。
本稿では,微調整された大規模言語モデルを利用して,テキストによるクラッシュ物語からDHAを自動的に推測する,革新的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.3457493284891338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle crashes involve complex interactions between road users, split-second decisions, and challenging environmental conditions. Among these, two-vehicle crashes are the most prevalent, accounting for approximately 70% of roadway crashes and posing a significant challenge to traffic safety. Identifying Driver Hazardous Action (DHA) is essential for understanding crash causation, yet the reliability of DHA data in large-scale databases is limited by inconsistent and labor-intensive manual coding practices. Here, we present an innovative framework that leverages a fine-tuned large language model to automatically infer DHAs from textual crash narratives, thereby improving the validity and interpretability of DHA classifications. Using five years of two-vehicle crash data from MTCF, we fine-tuned the Llama 3.2 1B model on detailed crash narratives and benchmarked its performance against conventional machine learning classifiers, including Random Forest, XGBoost, CatBoost, and a neural network. The fine-tuned LLM achieved an overall accuracy of 80%, surpassing all baseline models and demonstrating pronounced improvements in scenarios with imbalanced data. To increase interpretability, we developed a probabilistic reasoning approach, analyzing model output shifts across original test sets and three targeted counterfactual scenarios: variations in driver distraction and age. Our analysis revealed that introducing distraction for one driver substantially increased the likelihood of "General Unsafe Driving"; distraction for both drivers maximized the probability of "Both Drivers Took Hazardous Actions"; and assigning a teen driver markedly elevated the probability of "Speed and Stopping Violations." Our framework and analytical methods provide a robust and interpretable solution for large-scale automated DHA detection, offering new opportunities for traffic safety analysis and intervention.
- Abstract(参考訳): 自動車事故には、道路利用者間の複雑な相互作用、分割秒の決定、環境条件への挑戦が含まれる。
このうち、二車衝突が最も多く、道路事故の約70%を占め、交通安全にとって大きな課題となっている。
衝突因果関係を理解するためには,ドライバ危険行動(DHA)の同定が不可欠であるが,大規模データベースにおけるDHAデータの信頼性は,一貫性のない,労働集約的な手動コーディングプラクティスによって制限される。
そこで本研究では, 微調整された大言語モデルを用いて, テキストのクラッシュ物語からDHAを自動的に推定し, DHA分類の有効性と解釈性を向上させる, 革新的なフレームワークを提案する。
MTCFから5年間の2サイクルのクラッシュデータを用いて、詳細なクラッシュの物語についてLlama 3.2 1Bモデルを微調整し、ランダムフォレスト、XGBoost、CatBoost、ニューラルネットワークなどの従来の機械学習分類器に対してパフォーマンスをベンチマークした。
微調整されたLLMは全体の80%の精度を達成し、すべてのベースラインモデルを超え、不均衡なデータを持つシナリオで顕著に改善された。
解釈可能性を高めるために,本研究では,原テストセット間のモデル出力シフトと,運転者の気晴らしや年齢の変動という3つのシナリオを対象とした確率論的推論手法を開発した。
分析の結果,一方の運転者に注意散らしを導入することは,「一般安全運転」の可能性を著しく高め,双方の運転者に注意散らしは,「双方の運転者が危険行動を起こす」確率を最大化し,十代の運転者には「高速・停止違反」の確率を著しく高めることが判明した。
我々のフレームワークと分析手法は、大規模自動DHA検出のための堅牢で解釈可能なソリューションを提供し、交通安全分析と介入のための新たな機会を提供する。
関連論文リスト
- CoReVLA: A Dual-Stage End-to-End Autonomous Driving Framework for Long-Tail Scenarios via Collect-and-Refine [73.74077186298523]
CoReVLAは、自動運転のための継続的学習フレームワークである。
データコレクションとビヘイビアリファインメントの2段階プロセスを通じて、ロングテールシナリオのパフォーマンスを改善する。
CoReVLAは72.18のドライビングスコア(DS)と50%の成功率(SR)を達成し、7.96DSの最先端手法と15%SRの長期的安全クリティカルシナリオで性能を向上する。
論文 参考訳(メタデータ) (2025-09-19T13:25:56Z) - Predicting and Explaining Traffic Crash Severity Through Crash Feature Selection [1.0941365324532635]
この研究は、オハイオ州で6~2022年に起きた事故に300万人以上の人が関わったデータセットを紹介します。
主な貢献は、自動機械学習(AutoML)と説明可能な人工知能(AI)を組み合わせて、深刻なクラッシュに関連する主要なリスク要因を特定し、解釈する、透過的で再現可能な方法論である。
主な特徴は、人口統計、環境、車両、人的および運用上のカテゴリーで、位置タイプや投稿速度、居住年齢の最小化、クレーシュ前の行動などが含まれる。
論文 参考訳(メタデータ) (2025-08-15T14:31:26Z) - Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
ボルボグループが提供する5台の車載トラックから収集した制御エリアネットワーク(CAN)バスデータを用いたオーバーテイク検出に焦点を当てた。
車両操作検出、ニューラルネットワーク(ANN)、ランダムフォレスト(RF)、サポートベクトルマシン(SVM)の3つの共通分類器の評価を行った。
当社のパートラック分析では、特にオーバーテイクにおいて、車両毎のトレーニングデータの量に依存する分類精度も明らかにしています。
論文 参考訳(メタデータ) (2025-07-01T09:20:41Z) - Towards Reliable and Interpretable Traffic Crash Pattern Prediction and Safety Interventions Using Customized Large Language Models [14.53510262691888]
TrafficSafeは、テキストレベルの推論として、再フレームのクラッシュ予測と機能属性に適応するフレームワークである。
飲酒運転が深刻な事故の要因となっている。
TrafficSafeは、戦略的クラッシュデータ収集の改善を導くモデルトレーニングにおいて、重要な機能を強調している。
論文 参考訳(メタデータ) (2025-05-18T21:02:30Z) - Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors [0.0]
本研究は,大規模言語モデル(LLM)を利用して高速道路の事故データを解析し,それに応じて事故原因分析を行う。
微調整されたLlama3 8Bモデルは、ゼロショット分類によって事前にラベル付けされたデータなしでクラッシュ因果を識別するために使用された。
その結果, LLMはアルコール欠乏運転, スピード, 積極的運転, 運転不注意などの事故原因を効果的に同定できることが示唆された。
論文 参考訳(メタデータ) (2025-05-15T04:07:55Z) - NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction [11.444259609536164]
既存の衝突リスク予測モデルは、研究者が危険とみなす仮説上のシナリオに依存している。
ダッシュカムビデオは、個々の車のクレーシュ前動作を撮影するが、周囲の車両の動きに関する重要な情報を欠いていることが多い。
本研究では,車両とその周辺車両間の対話的挙動を捉えるために,新しい非定常極値理論(EVT)を提案する。
論文 参考訳(メタデータ) (2025-03-06T02:12:40Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
軌道予測は、自動運転車における計画の安全性と効率に不可欠である。
現在のモデルでは、複雑な交通規則と潜在的な車両の動きを完全に捉えることができないことが多い。
本研究は, オフロード損失, 方向整合誤差, ダイバーシティ損失の3つの新しい損失関数を紹介する。
論文 参考訳(メタデータ) (2024-11-29T14:47:08Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。