論文の概要: Heteroscedastic Neural Networks for Path Loss Prediction with Link-Specific Uncertainty
- arxiv url: http://arxiv.org/abs/2511.23243v1
- Date: Fri, 28 Nov 2025 14:52:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.944872
- Title: Heteroscedastic Neural Networks for Path Loss Prediction with Link-Specific Uncertainty
- Title(参考訳): リンク不確実性を考慮した経路損失予測のためのヘテロセダスティックニューラルネットワーク
- Authors: Jonathan Ethier,
- Abstract要約: 本稿では,平均およびリンク固有分散を共同で予測するニューラルネットワークを提案する。
これらの不確実性は、リンク固有のカバレッジマージンをさらに支持し、RF計画と干渉分析を改善し、モデルの弱点を効果的に診断する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional and modern machine learning-based path loss models typically assume a constant prediction variance. We propose a neural network that jointly predicts the mean and link-specific variance by minimizing a Gaussian negative log-likelihood, enabling heteroscedastic uncertainty estimates. We compare shared, partially shared, and independent-parameter architectures using accuracy, calibration, and sharpness metrics on blind test sets from large public RF drive-test datasets. The shared-parameter architecture performs best, achieving an RMSE of 7.4 dB, 95.1 percent coverage for 95 percent prediction intervals, and a mean interval width of 29.6 dB. These uncertainty estimates further support link-specific coverage margins, improve RF planning and interference analyses, and provide effective self-diagnostics of model weaknesses.
- Abstract(参考訳): 従来の機械学習に基づく経路損失モデルは通常、一定の予測分散を仮定する。
本稿では,ガウスの負の対数類似度を最小化することにより,平均およびリンク固有分散を共同で予測し,不確定性の推定を可能にするニューラルネットワークを提案する。
大規模公開RF駆動テストデータセットのブラインドテストセットに対する精度、校正、シャープネスの測定値を用いて、共有、部分共有、および独立パラメータアーキテクチャを比較した。
共有パラメータアーキテクチャは、RMSEが7.4dB、95%の予測間隔が95.1%、平均間隔幅が29.6dBである。
これらの不確実性は、リンク固有のカバレッジマージンをさらに支持し、RF計画と干渉分析を改善し、モデルの弱点を効果的に診断する。
関連論文リスト
- Conformal Prediction for Multi-Source Detection on a Network [59.17729745907474]
マルチソース検出問題について検討する。
グラフ上のノード感染状況のスナップショットが与えられた場合、伝播を開始するソースノードのセットを推定する。
本稿では,ソースセット検出のための統計的に有効なリコール保証を提供する新しいコンフォメーション予測フレームワークを提案する。
論文 参考訳(メタデータ) (2025-11-12T01:09:56Z) - Uncertainty Awareness on Unsupervised Domain Adaptation for Time Series Data [49.36938105983916]
教師なし領域適応法は、ラベルのないテストデータに効果的に一般化しようとする。
本稿では,ドメイン間の一般化とロバスト性を改善するために,マルチスケールの特徴抽出と不確実性推定を導入することを提案する。
論文 参考訳(メタデータ) (2025-08-26T03:13:08Z) - An analysis of the noise schedule for score-based generative models [7.180235086275926]
スコアベース生成モデル(SGM)は、目標からのノイズ摂動サンプルのみを用いてスコア関数を学習することにより、目標データ分布を推定することを目的としている。
近年の文献では、ターゲットと推定分布の誤差を評価し、KL(Kulback-Leibler)の発散とワッサーシュタイン距離を通じて生成品質を測ることに重点を置いている。
対象と推定分布のKL分散の上限を時間依存ノイズスケジュールによって明確に設定する。
論文 参考訳(メタデータ) (2024-02-07T08:24:35Z) - An AI-enabled Bias-Free Respiratory Disease Diagnosis Model using Cough
Audio: A Case Study for COVID-19 [1.1146119513912156]
トレーニングデータ配信における共同創設者の影響を軽減するため, Bias Free Network (RBFNet) を提案する。
RBFNetは正確なRD診断機能を保証し、COVID19データセットを組み込むことでその関連性を強調する。
条件付き生成Adrial Network (cGAN) を定式化するための分類スキームに新たなバイアス予測器が組み込まれている
論文 参考訳(メタデータ) (2024-01-04T13:09:45Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural Networks [2.4554686192257424]
我々は、一般化されたJensen-Shannon(JS)の発散に新たな修正を加えて、BNNの新たな損失関数を定式化する。
JSの発散に基づく変分推論は難解であり,従ってこれらの損失を定式化するために制約付き最適化フレームワークが用いられている。
複数の回帰および分類データセットに関する理論的解析および実証実験により、提案された損失はKLの発散に基づく損失よりも良く、特にデータセットがノイズや偏りがある場合の方が優れていることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T01:47:09Z) - Accurate Prediction and Uncertainty Estimation using Decoupled
Prediction Interval Networks [0.0]
精度を犠牲にすることなく、回帰に基づく予測の不確かさを確実に推定できるネットワークアーキテクチャを提案する。
予測と予測間隔(PI)推定の学習を2段階の学習プロセスに分解することで、これを実現する。
提案手法を,合成データセットおよびUCIベンチマーク上での最先端不確実性定量化アルゴリズムと比較し,予測誤差を23~34%削減した。
論文 参考訳(メタデータ) (2022-02-19T19:31:36Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。