論文の概要: Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2209.11366v4
- Date: Tue, 03 Dec 2024 22:44:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:04:42.911881
- Title: Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural Networks
- Title(参考訳): Jensen-Shannon分散に基づくベイズニューラルネットワークの新しい損失関数
- Authors: Ponkrshnan Thiagarajan, Susanta Ghosh,
- Abstract要約: 我々は、一般化されたJensen-Shannon(JS)の発散に新たな修正を加えて、BNNの新たな損失関数を定式化する。
JSの発散に基づく変分推論は難解であり,従ってこれらの損失を定式化するために制約付き最適化フレームワークが用いられている。
複数の回帰および分類データセットに関する理論的解析および実証実験により、提案された損失はKLの発散に基づく損失よりも良く、特にデータセットがノイズや偏りがある場合の方が優れていることが示唆された。
- 参考スコア(独自算出の注目度): 2.4554686192257424
- License:
- Abstract: Bayesian neural networks (BNNs) are state-of-the-art machine learning methods that can naturally regularize and systematically quantify uncertainties using their stochastic parameters. Kullback-Leibler (KL) divergence-based variational inference used in BNNs suffers from unstable optimization and challenges in approximating light-tailed posteriors due to the unbounded nature of the KL divergence. To resolve these issues, we formulate a novel loss function for BNNs based on a new modification to the generalized Jensen-Shannon (JS) divergence, which is bounded. In addition, we propose a Geometric JS divergence-based loss, which is computationally efficient since it can be evaluated analytically. We found that the JS divergence-based variational inference is intractable, and hence employed a constrained optimization framework to formulate these losses. Our theoretical analysis and empirical experiments on multiple regression and classification data sets suggest that the proposed losses perform better than the KL divergence-based loss, especially when the data sets are noisy or biased. Specifically, there are approximately 5% and 8% improvements in accuracy for a noise-added CIFAR-10 dataset and a regression dataset, respectively. There is about a 13% reduction in false negative predictions of a biased histopathology dataset. In addition, we quantify and compare the uncertainty metrics for the regression and classification tasks.
- Abstract(参考訳): ベイズニューラルネットワーク(英: Bayesian Neural Network、BNN)は、確率的パラメータを用いて不確実性を自然に正規化し、体系的に定量化する、最先端の機械学習手法である。
Kullback-Leibler (KL) の発散に基づく変分推論は、不安定な最適化とKL発散の非有界性に起因する光尾後部近似の課題に悩まされている。
これらの問題を解決するために、一般化されたJensen-Shannon(JS)発散に対する新たな修正に基づいて、BNNの新たな損失関数を定式化する。
また、解析的に評価できるため、計算効率がよい幾何JSの偏差に基づく損失を提案する。
JSの発散に基づく変分推論は難解であり,これらの損失を定式化するために制約付き最適化フレームワークが用いられている。
複数の回帰および分類データセットに関する理論的解析および実証実験により、提案された損失はKLの発散に基づく損失よりも良く、特にデータセットがノイズや偏りがある場合の方が良いことが示唆された。
具体的には、ノイズ付加CIFAR-10データセットと回帰データセットの精度が約5%と8%向上している。
病理組織学的データセットの偽陰性予測の約13%が減少している。
さらに、回帰および分類タスクの不確実性指標を定量化し比較する。
関連論文リスト
- On weight and variance uncertainty in neural networks for regression tasks [1.6649383443094408]
分散不確実性を含むことにより,ベイズNNの予測性能が向上することを示す。
我々は,ネットワーク重みについて,それぞれガウスとスパイク・アンド・スラブの先行値を持つ完全連結高密度ネットワークとドロップアウトNNを探索する。
論文 参考訳(メタデータ) (2025-01-08T04:44:47Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - How do noise tails impact on deep ReLU networks? [2.5889847253961418]
非パラメトリック回帰関数のクラスにおける最適収束速度が p, 滑らか度, 内在次元に依存することを示す。
我々はまた、深部ReLUニューラルネットワークの近似理論に関する新しい結果にも貢献する。
論文 参考訳(メタデータ) (2022-03-20T00:27:32Z) - Cram\'er-Rao bound-informed training of neural networks for quantitative
MRI [11.964144201247198]
ニューラルネットワークは、定量的MRI、特に磁気共鳴フィンガープリントでパラメーターを推定するためにますます使われている。
それらの利点は、より優れた速度と非効率な非バイアス推定器の優位性である。
しかし、不均一なパラメータを推定することは困難である。
CRBを用いて二乗誤差を正規化するClam'erRao損失関数を提案する。
論文 参考訳(メタデータ) (2021-09-22T06:38:03Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences [22.496696555768846]
統計的距離は確率分布の相似性を定量化する。
このようなデータからの距離を推定する現代的な方法は、ニューラルネットワーク(NN)による変動形態のパラメータ化と最適化に依存する。
本稿では,このトレードオフを非漸近誤差境界を用いて検討し,SDの3つの一般的な選択に焦点をあてる。
論文 参考訳(メタデータ) (2021-03-11T19:47:30Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。