論文の概要: Graph-Attention Network with Adversarial Domain Alignment for Robust Cross-Domain Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2512.00641v1
- Date: Sat, 29 Nov 2025 21:32:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.340343
- Title: Graph-Attention Network with Adversarial Domain Alignment for Robust Cross-Domain Facial Expression Recognition
- Title(参考訳): 対向領域アライメント付きグラフ注意ネットワークによるロバストな顔表情認識
- Authors: Razieh Ghaedi, AmirReza BabaAhmadi, Reyer Zwiggelaar, Xinqi Fan, Nashid Alam,
- Abstract要約: 訓練データと展開データとのドメインシフトが激しいため,クロスドメイン顔表情認識(CD-FER)は依然として困難である。
シフト中のサンプル間関係をモデル化するために,GAT-ADA (Adversarial Domain Alignment) を用いたグラフアテンションネットワークを提案する。
- 参考スコア(独自算出の注目度): 2.8412470965721113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain facial expression recognition (CD-FER) remains difficult due to severe domain shift between training and deployment data. We propose Graph-Attention Network with Adversarial Domain Alignment (GAT-ADA), a hybrid framework that couples a ResNet-50 as backbone with a batch-level Graph Attention Network (GAT) to model inter-sample relations under shift. Each mini-batch is cast as a sparse ring graph so that attention aggregates cross-sample cues that are informative for adaptation. To align distributions, GAT-ADA combines adversarial learning via a Gradient Reversal Layer (GRL) with statistical alignment using CORAL and MMD. GAT-ADA is evaluated under a standard unsupervised domain adaptation protocol: training on one labeled source (RAF-DB) and adapting to multiple unlabeled targets (CK+, JAFFE, SFEW 2.0, FER2013, and ExpW). GAT-ADA attains 74.39% mean cross-domain accuracy. On RAF-DB to FER2013, it reaches 98.0% accuracy, corresponding to approximately a 36-point improvement over the best baseline we re-implemented with the same backbone and preprocessing.
- Abstract(参考訳): 訓練データと展開データとのドメインシフトが激しいため,クロスドメイン顔表情認識(CD-FER)は依然として困難である。
本稿では,ResNet-50をバックボーンとして結合したハイブリッドフレームワークであるGraph-Attention Network with Adversarial Domain Alignment (GAT-ADA)を提案する。
各ミニバッチはスパースリンググラフとしてキャストされ、アテンションが適応に有用なクロスサンプルキューを集約する。
GAT-ADAは、分布を整列させるために、グラディエント・リバーサル・レイヤ(GRL)を経由した対向学習と、CoRALとMDを用いた統計的アライメントを組み合わせた。
GAT-ADAは、1つのラベル付きソース(RAF-DB)でトレーニングし、複数のラベル付きターゲット(CK+、JAFFE、SFEW 2.0、FER2013、ExpW)に適応する。
GAT-ADAの平均クロスドメイン精度は74.39%である。
RAF-DBからFER2013では98.0%の精度に達し、同じバックボーンと前処理で再実装した最高のベースラインよりも36ポイント改善された。
関連論文リスト
- Bridging Domain Adaptation and Graph Neural Networks: A Tensor-Based Framework for Effective Label Propagation [23.79865440689265]
グラフニューラルネットワーク(GNN)は近年,グラフデータ研究の主要なツールとなっている。
グラフ分類タスクにおける最先端のパフォーマンスにもかかわらず、GNNは監督下の単一のドメインで圧倒的に訓練されている。
本稿では,グラフデータと従来のドメイン適応手法のギャップを埋めるために,ラベル伝搬グラフニューラルネットワーク(LP-TGNN)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T15:36:38Z) - Degree-Conscious Spiking Graph for Cross-Domain Adaptation [51.58506501415558]
Spiking Graph Networks (SGNs) はグラフ分類において大きな可能性を証明している。
DeSGraDA(Degree-Consicious Spiking Graph for Cross-Domain Adaptation)という新しいフレームワークを紹介する。
DeSGraDAは3つのキーコンポーネントを持つドメイン間の一般化を強化する。
論文 参考訳(メタデータ) (2024-10-09T13:45:54Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
半教師付きドメイン適応(SSDA)は、ソースとターゲットのドメイン分布をブリッジすることを目的としており、少数のターゲットラベルが利用可能である。
既存のSSDAの作業は、ソースドメインとターゲットドメインの両方からラベル情報をフル活用して、ドメイン間の機能アライメントに失敗する。
本稿では,新しいSSDA手法であるIDMNE(Inter-domain Mixup with Neighborhood Expansion)を提案する。
論文 参考訳(メタデータ) (2024-01-21T10:20:46Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
顔認識モデルは、トレーニングデータがテストデータと異なる場合、しばしば退化する。
本稿では,新たな敵情報ネットワーク(AIN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:14:11Z) - AdaTriplet-RA: Domain Matching via Adaptive Triplet and Reinforced
Attention for Unsupervised Domain Adaptation [15.905869933337101]
教師なしドメイン適応(Unsupervised Domain Adaption、UDA)は、ソースドメインのデータとアノテーションが利用できるが、トレーニング中にラベル付けされていないターゲットデータにのみアクセスできるトランスファー学習タスクである。
本稿では、ドメイン間サンプルマッチング方式を用いて、教師なしドメイン適応タスクを改善することを提案する。
ドメイン間サンプルに合わせるために,広く利用され,堅牢なTriplet損失を適用した。
トレーニング中に発生する不正確な擬似ラベルの破滅的効果を低減するため,信頼度の高い擬似ラベルを自動的に選択し,段階的に改良する新しい不確実性測定法を提案する。
論文 参考訳(メタデータ) (2022-11-16T13:04:24Z) - Adaptive Graph-Based Feature Normalization for Facial Expression
Recognition [1.2246649738388389]
データ不確実性から表情認識モデルを保護するために,適応グラフに基づく特徴正規化(AGFN)手法を提案する。
我々の手法は、ベンチマークデータセットで91.84%、91.11%の精度で最先端の作業より優れています。
論文 参考訳(メタデータ) (2022-07-22T14:57:56Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
クロスドメイン適応における特徴アライメントのためのコントラスト学習を導入する。
提案手法は、ドメイン適応のための最先端手法を一貫して上回る。
Cityscapesデータセットで60.2% mIoUを達成した。
論文 参考訳(メタデータ) (2022-04-18T16:50:46Z) - SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object
Detection [26.0630601028093]
ドメイン適応オブジェクト検出(DAOD)は、ラベル付きドメインを利用して、アノテーションのない新しいドメインに一般化されたオブジェクト検出器を学ぶ。
クロスドメインプロトタイプ(クラスセンター)の縮小によるクラス条件分布の調整
本稿では,不一致のセマンティックスを補完し,グラフマッチングによる適応を再構築する,幻覚Dのための新しいSemantIc完全グラフマッチングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-12T10:14:17Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。