論文の概要: Infinitely divisible privacy and beyond I: resolution of the $s^2=2k$ conjecture
- arxiv url: http://arxiv.org/abs/2512.00734v1
- Date: Sun, 30 Nov 2025 05:09:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.388129
- Title: Infinitely divisible privacy and beyond I: resolution of the $s^2=2k$ conjecture
- Title(参考訳): 無限に分割可能なプライバシーとIを超える:$s^2=2k$予想の解決
- Authors: Aaradhya Pandey, Arian Maleki, Sanjeev Kulkarni,
- Abstract要約: 任意の極限トレードオフ関数 $f_infty$ は無限に可除な法則$P_infty$ によって決定されることを示す。
これは、ほぼ完全な微分プライベートな機構の合成から生じるすべての制限ベースライントレードオフ関数を$f_infty$で特徴づける。
- 参考スコア(独自算出の注目度): 9.852135157542799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy is increasingly formalized through the lens of hypothesis testing via the robust and interpretable $f$-DP framework, where privacy guarantees are encoded by a baseline Blackwell trade-off function $f_{\infty} = T(P_{\infty}, Q_{\infty})$ involving a pair of distributions $(P_{\infty}, Q_{\infty})$. The problem of choosing the right privacy metric in practice leads to a central question: what is a statistically appropriate baseline $f_{\infty}$ given some prior modeling assumptions? The special case of Gaussian differential privacy (GDP) showed that, under compositions of nearly perfect mechanisms, these trade-off functions exhibit a central limit behavior with a Gaussian limit experiment. Inspired by Le Cam's theory of limits of statistical experiments, we answer this question in full generality in an infinitely divisible setting. We show that suitable composition experiments $(P_n^{\otimes n}, Q_n^{\otimes n})$ converge to a binary limit experiment $(P_{\infty}, Q_{\infty})$ whose log-likelihood ratio $L = \log(dQ_{\infty} / dP_{\infty})$ is infinitely divisible under $P_{\infty}$. Thus any limiting trade-off function $f_{\infty}$ is determined by an infinitely divisible law $P_{\infty}$, characterized by its Levy--Khintchine triplet, and its Esscher tilt defined by $dQ_{\infty}(x) = e^{x} dP_{\infty}(x)$. This characterizes all limiting baseline trade-off functions $f_{\infty}$ arising from compositions of nearly perfect differentially private mechanisms. Our framework recovers GDP as the purely Gaussian case and yields explicit non-Gaussian limits, including Poisson examples. It also positively resolves the empirical $s^2 = 2k$ phenomenon observed in the GDP paper and provides an optimal mechanism for count statistics achieving asymmetric Poisson differential privacy.
- Abstract(参考訳): 差分プライバシーは、堅牢で解釈可能な$f$-DPフレームワークを通じて仮説テストのレンズによって形式化され、プライバシー保証はベースラインのBlackwell トレードオフ関数 $f_{\infty} = T(P_{\infty}, Q_{\infty})$$でエンコードされる。
統計的に適切なベースラインである$f_{\infty}$は、事前のモデリング仮定を考慮すれば何なのか?
ガウス微分プライバシー(GDP)の特別な例は、ほぼ完全なメカニズムの合成の下で、これらのトレードオフ関数がガウスの極限実験で中心的な極限挙動を示すことを示した。
ル・カムの統計実験の極限の理論に触発されて、この問題は無限に可分な設定で完全な一般性で答える。
適切な合成実験 $(P_n^{\otimes n}, Q_n^{\otimes n})$ は二項極限実験 $(P_{\infty}, Q_{\infty})$ に収束し、対数類似度が $L = \log(dQ_{\infty} / dP_{\infty})$ は$P_{\infty}$ の下で無限に割り切れることを示す。
したがって、任意の極限トレードオフ関数 $f_{\infty}$ は、無限に割り切れる法則 $P_{\infty}$ によって決定される。
これは、ほぼ完全な微分プライベートな機構の合成から生じるすべての制限ベースライントレードオフ関数 $f_{\infty}$ を特徴づける。
我々の枠組みは、純粋にガウス的ケースとしてGDPを回復し、ポアソンの例を含む露骨な非ガウス的限界をもたらす。
また、GDP論文で観測された経験的な$s^2 = 2k$現象を積極的に解決し、非対称ポアソン微分プライバシーを達成する統計をカウントするための最適なメカニズムを提供する。
関連論文リスト
- Smooth Sensitivity for Geo-Privacy [17.835910182900985]
微分プライバシーの局所モデル (LDP) は、この問題が研究されている主要なモデルである。
Geo-Privacy (GP) は、識別可能性のレベルが$mathrmdist(x_i, x_i')$に比例することを規定している。
微分プライバシーからGeo-Privacyへのスムーズな感度フレームワークを一般化することで、与えられたインスタンスの硬さに合わせてノイズを加えることができます。
論文 参考訳(メタデータ) (2024-05-10T08:32:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Contraction of Locally Differentially Private Mechanisms [8.547801169402923]
我々は、$PK$と$QK$の出力分布が$epsilon$-LDPメカニズムの$K$のばらつきに基づいて、厳密な境界を導出する。
次に、これらの境界を利用して、バンツリーの不等式、ル・カム、アスード、および相互情報手法の局所的プライベートバージョンを確立する。
論文 参考訳(メタデータ) (2022-10-24T16:38:12Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping [40.69950711262191]
我々は、差分プライベート(DP)を保証する重み付きデータに対する差分プライベート凸最適化について検討する。
我々は,制約付きおよび制約なし凸問題に対するAClipped-dpSGDというアルゴリズムに対して,新たな収束結果を確立し,複雑性境界を改善した。
論文 参考訳(メタデータ) (2022-06-27T01:39:15Z) - Private Convex Optimization via Exponential Mechanism [16.867534746193833]
我々は、$ellcave2$ regularizerを$F(x)$に追加することで指数的なメカニズムを変更することで、既知の最適経験的リスクと人口損失の両方を$(epsilon,delta)$-DPで回復することを示した。
また、DP-SCOに対して$widetildeO(n min(d, n))クエリを使って$f_i(x)にこのメカニズムを実装する方法を示す。
論文 参考訳(メタデータ) (2022-03-01T06:51:03Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Cascading Bandit under Differential Privacy [21.936577816668944]
本研究では,カスケードバンドにおける自己差分プライバシー(DP)と局所差分プライバシー(LDP)について検討する。
DPでは,$epsilon$-indistinguishability を保証し,$mathcalO(fraclog3 Tepsilon)$を任意の小さな$xi$に対して後悔するアルゴリズムを提案する。
Epsilon$,$delta$)-LDPの下では、プライバシの予算とエラー確率のトレードオフを通じて、K2$依存を緩和します。
論文 参考訳(メタデータ) (2021-05-24T07:19:01Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z) - Locally Private Hypothesis Selection [96.06118559817057]
我々は、$mathcalQ$から$p$までの総変動距離が最良の分布に匹敵する分布を出力する。
局所的な差分プライバシーの制約は、コストの急激な増加を引き起こすことを示す。
提案アルゴリズムは,従来手法のラウンド複雑性を指数関数的に改善する。
論文 参考訳(メタデータ) (2020-02-21T18:30:48Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
我々は、他の攻撃モデルに対してスムースな手法を拡張することは困難であることを示す。
我々はCIFARに関する実験結果を示し,その理論を検証した。
論文 参考訳(メタデータ) (2020-02-08T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。