論文の概要: Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping
- arxiv url: http://arxiv.org/abs/2206.13011v4
- Date: Tue, 10 Sep 2024 04:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 00:23:12.364672
- Title: Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping
- Title(参考訳): 平均クリッピングによる重機データのための効率的なプライベートSCO
- Authors: Chenhan Jin, Kaiwen Zhou, Bo Han, James Cheng, Tieyong Zeng,
- Abstract要約: 我々は、差分プライベート(DP)を保証する重み付きデータに対する差分プライベート凸最適化について検討する。
我々は,制約付きおよび制約なし凸問題に対するAClipped-dpSGDというアルゴリズムに対して,新たな収束結果を確立し,複雑性境界を改善した。
- 参考スコア(独自算出の注目度): 40.69950711262191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Most prior works on differentially private stochastic convex optimization for heavy-tailed data are either restricted to gradient descent (GD) or performed multi-times clipping on stochastic gradient descent (SGD), which is inefficient for large-scale problems. In this paper, we consider a one-time clipping strategy and provide principled analyses of its bias and private mean estimation. We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems. We also extend our convergent analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with H$\ddot{\text{o}}$lder-continuous gradients). All the above results are guaranteed with a high probability for heavy-tailed data. Numerical experiments are conducted to justify the theoretical improvement.
- Abstract(参考訳): 重み付きデータに対する確率的凸最適化を、差分プライベート(DP)の保証とともに検討する。
重み付きデータに対する微分的確率凸最適化に関する先行研究は、勾配降下(GD)に制限されるか、大規模問題では非効率な確率勾配降下(SGD)に複数回クリッピングされるかのいずれかである。
本稿では,1回のクリッピング戦略を考察し,そのバイアスとプライベート平均推定の原理的分析を行う。
我々は,制約付きおよび制約なし凸問題に対するAClipped-dpSGDというアルゴリズムに対して,新たな収束結果を確立し,複雑性境界を改善した。
また、収束解析を強凸ケースと非滑らかケース(H$\ddot{\text{o}}$lder-連続勾配で一般化された滑らかな目的に対して機能する)にまで拡張する。
以上の結果は、重み付きデータに対して高い確率で保証される。
理論的改善を正当化するための数値実験を行った。
関連論文リスト
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) を使用して、差分プライバシ(DP)がモデルパフォーマンス劣化の犠牲となることを保証する。
DPSGD-GCに代わる新しいエラーフィードバック(EF)DPアルゴリズムを提案する。
提案アルゴリズムに対するアルゴリズム固有のDP解析を確立し,R'enyi DPに基づくプライバシ保証を提供する。
論文 参考訳(メタデータ) (2023-11-24T17:56:44Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Dimension Independent Generalization of DP-SGD for Overparameterized
Smooth Convex Optimization [24.644583626705742]
本稿では,差分プライベート凸学習の一般化性能について考察する。
本稿では,Langevinアルゴリズムの収束解析を用いて,DP-SGDの差分プライバシー保証を伴う新たな一般化境界を求めることを実証する。
論文 参考訳(メタデータ) (2022-06-03T22:03:05Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
任意のリプシッツ非平滑凸損失に対して,数種類の勾配勾配降下(SGD)に対して,鋭い上下境界を与える。
我々の限界は、極端に過剰な集団リスクを伴う、微分的にプライベートな非平滑凸最適化のための新しいアルゴリズムを導出することを可能にする。
論文 参考訳(メタデータ) (2020-06-12T02:45:21Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
ネステロフの外挿は、非滑らかな問題に対して勾配降下法の個人収束を最適にする強さを持つことを証明している。
提案手法は,設定の非滑らかな損失を伴って正規化学習タスクを解くためのアルゴリズムの拡張である。
本手法は,大規模な1-正規化ヒンジロス学習問題の解法として有効である。
論文 参考訳(メタデータ) (2020-06-08T03:35:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。