論文の概要: Teaching by Failure: Counter-Example-Driven Curricula for Transformer Self-Improvement
- arxiv url: http://arxiv.org/abs/2512.01187v1
- Date: Mon, 01 Dec 2025 02:00:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.631893
- Title: Teaching by Failure: Counter-Example-Driven Curricula for Transformer Self-Improvement
- Title(参考訳): 失敗による教育:変圧器自己改善のための反例駆動カリキュラム
- Authors: Harshil Vejendla,
- Abstract要約: トランスフォーマーモデルは、しばしば不安定な外挿を示し、トレーニング中に見られるものよりも長く、または構造的に複雑である入力に失敗する。
自動フレームワークであるCounter-Example-Driven Curricula (CEDC)を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer models often exhibit brittle extrapolation, failing on inputs that are longer or structurally more complex than those seen during training. We introduce Counter-Example-Driven Curricula (CEDC), an automated framework that improves model robustness by iteratively focusing on its own failures. At each step, CEDC uses the current model to generate a diverse set of candidate problems, employs a fast, executable verifier to identify incorrect predictions (counter-examples), and then fine-tunes the model on a dataset enriched with these discovered failures. We evaluate CEDC on a suite of algorithmic and natural language tasks, including integer addition, sorting, Dyck-2 language recognition, and three text classification benchmarks. Compared to static training and standard curriculum learning baselines, CEDC achieves up to 30x greater length extrapolation, is 3.75x more computationally efficient than uniform data augmentation, and requires no manual difficulty heuristics. We provide a detailed analysis of the counter-examples, showing how the curriculum naturally adapts to target progressively more complex error modes. Our findings establish verifier-guided, failure-driven learning as a simple, powerful, and efficient paradigm for enhancing the generalization capabilities of Transformer models.
- Abstract(参考訳): トランスフォーマーモデルは、しばしば不安定な外挿を示し、トレーニング中に見られるものよりも長く、または構造的に複雑である入力に失敗する。
自動フレームワークであるCounter-Example-Driven Curricula(CEDC)を導入する。
それぞれのステップで、CEDCは現在のモデルを使用して、さまざまな候補問題を生成し、高速で実行可能な検証器を使用して、誤った予測(カウンタ-サンプル)を特定し、これらの発見された障害に富んだデータセット上でモデルを微調整する。
我々は、整数加算、ソート、Dyck-2言語認識、および3つのテキスト分類ベンチマークを含む、アルゴリズムおよび自然言語タスクのスイートでCEDCを評価する。
静的トレーニングや標準的なカリキュラムのベースラインと比較すると、CEDCは最大30倍の長さの外挿を実現し、均一なデータ拡張よりも3.75倍計算効率が高く、手作業による難解なヒューリスティックは不要である。
本稿では,カリキュラムが徐々に複雑なエラーモードにどのように適応するかを詳細に分析する。
本研究は, 変圧器モデルの一般化能力向上のための, 簡易かつ強力かつ効率的なパラダイムとして, 検証誘導型, 故障駆動型学習を確立した。
関連論文リスト
- Continuous Self-Improvement of Large Language Models by Test-time Training with Verifier-Driven Sample Selection [6.471199527741301]
VDS-TTT(Verifier-Driven Sample Selection for Test-Time Training)と呼ばれる新しいフレームワークを導入する。
学習した検証器を用いて、生成された応答のプールをスコアし、高いランクの擬似ラベル付き例からのみ選び、微調整を施す。
低ランクなLoRAアダプタパラメータのみを微調整し、適応効率と高速収束を確保する。
論文 参考訳(メタデータ) (2025-05-26T03:54:47Z) - Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments [5.5855749614100825]
本稿では,複数の事前学習モデルを活用することで,このリコール低減を緩和できるという仮説を述べる。
我々は,一貫性に基づく推論問題として,様々なモデルからの矛盾する予測を特定し,管理することの課題を定式化する。
本研究は,複数の不完全なモデルから得られた知識を,難易度の高い新しいシナリオにおいて堅牢に統合するための効果的なメカニズムとして,一貫性に基づく誘拐の有効性を検証するものである。
論文 参考訳(メタデータ) (2025-05-25T23:17:47Z) - AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
知識追跡(KT)は、学生の知識状態を監視し、質問シーケンスに対する反応をシミュレートする。
既存のKTモデルは通常、単一ステップのトレーニングパラダイムに従っており、大きなエラーの蓄積につながる。
本稿では,多段階KTタスクに着目した新しい知識追跡のための多段階学習フレームワーク(AdvKT)を提案する。
論文 参考訳(メタデータ) (2025-04-07T03:31:57Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
トランスフォーマーニューラルネットワークに基づく事前学習言語モデル(PLM)は、通信科学における自動コンテンツ分析を改善する大きな機会を提供する。
これまでの3つの特徴は、NLP研究における英語モデルの優位性、必要な計算資源、微調整 PLM の訓練データ作成に必要な労力など、適用分野における手法の普及を妨げている。
我々は、われわれのアプローチを、コミュニケーション科学の現実的なユースケースで試し、主張や議論を自動的に検出し、ドイツによるウクライナへの武器の配達に関する議論におけるスタンスと合わせて検証する。
論文 参考訳(メタデータ) (2023-12-28T11:39:08Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z) - Discriminative and Generative Transformer-based Models For Situation
Entity Classification [8.029049649310211]
我々は、状況エンティティ(SE)分類タスクを、利用可能なトレーニングデータの量に応じて再検討する。
変換器を用いた変分オートエンコーダを用いて文を低次元の潜在空間に符号化する。
論文 参考訳(メタデータ) (2021-09-15T17:07:07Z) - Exploration and Exploitation: Two Ways to Improve Chinese Spelling
Correction Models [51.744357472072416]
本稿では,モデルの弱点を継続的に識別し,より価値の高いトレーニングインスタンスを生成する手法を提案する。
実験結果から, 事前学習戦略と組み合わさって, 複数のCSCモデルの一般化とロバスト性を改善することができることがわかった。
論文 参考訳(メタデータ) (2021-05-31T09:17:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。