論文の概要: A variational method for curve extraction with curvature-dependent energies
- arxiv url: http://arxiv.org/abs/2512.01494v1
- Date: Mon, 01 Dec 2025 10:16:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.796341
- Title: A variational method for curve extraction with curvature-dependent energies
- Title(参考訳): 曲率依存エネルギーを用いた曲線抽出の変分法
- Authors: Majid Arthaud, Antonin Chambolle, Vincent Duval,
- Abstract要約: 可能なエンドポイントのリスト間の曲線を抽出するための変分手法を提案する。
画像から曲線と1次元構造を自動的に抽出するバイレベル最小化手法を設計するために使用される。
- 参考スコア(独自算出の注目度): 0.15293427903448018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a variational approach for extracting curves between a list of possible endpoints, based on the discretization of an energy and Smirnov's decomposition theorem for vector fields. It is used to design a bi-level minimization approach to automatically extract curves and 1D structures from an image, which is mostly unsupervised. We extend then the method to curvature-dependent energies, using a now classical lifting of the curves in the space of positions and orientations equipped with an appropriate sub-Riemanian or Finslerian metric.
- Abstract(参考訳): 我々は、エネルギーの離散化とベクトル場に対するスミルノフの分解定理に基づいて、可能なエンドポイントのリスト間の曲線を抽出するための変分的アプローチを導入する。
画像から曲線と1D構造を自動的に抽出する二段階最小化手法を設計するのに使用されるが、ほとんど教師なしである。
次に、適切なリーマン計量あるいはフィンスラー計量を備えた位置と向きの空間における曲線の古典的な持ち上げを用いて、曲率依存エネルギーへ拡張する。
関連論文リスト
- Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction [14.628742412460346]
本稿では,多視点エッジマップから直接3次元パラメトリック曲線を再構成するためのエンドツーエンドフレームワークを提案する。
パラメトリック曲線とエッジ指向ガウス成分の双方向結合機構を提案する。
提案手法は,既存の手法に比べて高い効率と優れた性能を達成し,トレーニング中のパラメータ数を著しく削減する。
論文 参考訳(メタデータ) (2025-06-26T15:48:08Z) - Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness [51.302674884611335]
本研究は、急勾配と条件勾配のアプローチを組み合わせることでノルムクリッピングを一般化するハイブリッド非ユークリッド最適化手法を提案する。
本稿では、ディープラーニングのためのアルゴリズムのインスタンス化について論じ、画像分類と言語モデリングにおけるそれらの特性を実証する。
論文 参考訳(メタデータ) (2025-06-02T17:34:29Z) - CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection [23.643189106137008]
本稿では、曲率に基づく幾何学的異常の概念を導入する混合曲率グラフオートエンコーダであるCurvGADを提案する。
CurvGADは2つの並列パイプラインを導入し、異常解釈性を向上した。
10以上の実世界のデータセットの実験では、最先端のGADメソッドよりも最大6.5%改善されている。
論文 参考訳(メタデータ) (2025-02-12T17:49:46Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
本稿では,一定曲率空間の積を完全に操作するトランスフォーマーの一般化を提案する。
また、非ユークリッド注意に対するカーネル化されたアプローチを提供し、ノード数とエッジ数に線形に時間とメモリコストでモデルを実行できるようにします。
論文 参考訳(メタデータ) (2023-09-08T02:44:37Z) - Last-Iterate Convergence of Adaptive Riemannian Gradient Descent for Equilibrium Computation [52.73824786627612]
本稿では,テクスト幾何学的強単調ゲームに対する新たな収束結果を確立する。
我々のキーとなる結果は、RGDがテクスト幾何学的手法で最終定位線形収束を実現することを示しています。
全体として、ユークリッド設定を超えるゲームに対して、幾何学的に非依存な最終点収束解析を初めて提示する。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Geodesic Models with Convexity Shape Prior [8.932981695464761]
本稿では, より複雑な問題として, 凸形状を持つ曲率ペナル化された測地線経路の発見について考察する。
配向リフトの戦略に依存する新しい測地モデルを構築した。
凸形状は、曲率の制約を符号化した局所測地線メトリクスの構築のための制約として機能する。
論文 参考訳(メタデータ) (2021-11-01T09:41:54Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。