論文の概要: Towards a fully differentiable digital twin for solar cells
- arxiv url: http://arxiv.org/abs/2512.02904v1
- Date: Tue, 02 Dec 2025 16:20:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.961601
- Title: Towards a fully differentiable digital twin for solar cells
- Title(参考訳): 太陽電池のための完全微分可能なディジタルツインを目指して
- Authors: Marie Louise Schubert, Houssam Metni, Jan David Fischbach, Benedikt Zerulla, Marjan Krstić, Ulrich W. Paetzold, Seyedamir Orooji, Olivier J. J. Ronsin, Yasin Ameslon, Jens Harting, Thomas Kirchartz, Sandheep Ravishankar, Chris Dreessen, Eunchi Kim, Christian Sprau, Mohamed Hussein, Alexander Colsmann, Karen Forberich, Klaus Jäger, Pascal Friederich, Carsten Rockstuhl,
- Abstract要約: 本稿では、太陽電池の総合的なエンドツーエンド最適化を実現するために、微分可能なデジタルツインであるSol(Di)$2$Tを導入する。
提案された枠組みは、特定の用途のために太陽電池を調整するための重要なステップである。
- 参考スコア(独自算出の注目度): 26.10794626216182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximizing energy yield (EY) - the total electric energy generated by a solar cell within a year at a specific location - is crucial in photovoltaics (PV), especially for emerging technologies. Computational methods provide the necessary insights and guidance for future research. However, existing simulations typically focus on only isolated aspects of solar cells. This lack of consistency highlights the need for a framework unifying all computational levels, from material to cell properties, for accurate prediction and optimization of EY prediction. To address this challenge, a differentiable digital twin, Sol(Di)$^2$T, is introduced to enable comprehensive end-to-end optimization of solar cells. The workflow starts with material properties and morphological processing parameters, followed by optical and electrical simulations. Finally, climatic conditions and geographic location are incorporated to predict the EY. Each step is either intrinsically differentiable or replaced with a machine-learned surrogate model, enabling not only accurate EY prediction but also gradient-based optimization with respect to input parameters. Consequently, Sol(Di)$^2$T extends EY predictions to previously unexplored conditions. Demonstrated for an organic solar cell, the proposed framework marks a significant step towards tailoring solar cells for specific applications while ensuring maximal performance.
- Abstract(参考訳): エネルギー収率の最大化(EY) - 太陽電池が特定の場所で1年以内に発生する全エネルギー - は、特に新興技術において、太陽光発電(PV)において不可欠である。
計算手法は将来の研究に必要な洞察とガイダンスを提供する。
しかし、既存のシミュレーションは通常、太陽電池の孤立した側面のみに焦点を当てている。
この一貫性の欠如は、EY予測の正確な予測と最適化のために、材料から細胞特性まで、全ての計算レベルを統一するフレームワークの必要性を強調している。
この課題に対処するために、太陽電池の包括的なエンドツーエンド最適化を可能にするために、微分可能なデジタルツインであるSol(Di)$^2$Tが導入された。
ワークフローは、材料特性と形態的処理パラメータから始まり、続いて光学的および電気的シミュレーションが続く。
最後に、気候条件と地理的な位置がEYを予測するために組み込まれている。
それぞれのステップは本質的に微分可能か、あるいは機械学習のサロゲートモデルに置き換えられ、正確なEY予測だけでなく、入力パラメータに対する勾配に基づく最適化を可能にする。
その結果、Sol(Di)$^2$T は以前の未探索条件まで EY 予測を拡張する。
提案する枠組みは、有機太陽電池を実証し、最大性能を確保しつつ、特定の用途のために太陽電池を調整するための重要なステップとなる。
関連論文リスト
- Ultra-short-term solar power forecasting by deep learning and data reconstruction [60.200987006598524]
深層学習に基づく超短周期太陽エネルギー予測とデータ再構成を提案する。
我々は、ターゲット予測期間に対する長期的および短期的依存関係をキャプチャするために、ディープラーニングモデルを用いる。
論文 参考訳(メタデータ) (2025-09-21T14:22:35Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
本研究では,所望のバッテリ適用条件に対する高性能電極の課題に対処する。
本稿では、電気化学性能の2目的最適化のための決定論的機械学習(ML)支援パイプラインによって支援される強力なデータ駆動アプローチを提案する。
以上の結果から,スラリー中の固形物の中間値とカレンダリング度を併用した高活性物質が最適電極となることが示唆された。
論文 参考訳(メタデータ) (2023-07-07T13:48:50Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
特定の地理的位置に対して太陽光発電(PV)発電量を推定することが重要である。
本稿では,太陽PV発電における気象パラメータの影響を,Bagging,Boosting,Stacking,VottingなどのEnsemble ML(EML)モデルを用いて推定する。
その結果,スタックモデルと投票モデルでは,約96%の予測精度が得られた。
論文 参考訳(メタデータ) (2023-01-21T19:16:03Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
太陽光発電(PV)発電を予測するモデルを構築することで、意思決定者はエネルギー不足を補うことができる。
太陽エネルギーの出力は、光や天気など多くの要因に依存する時系列データである。
本研究では, 過去のデータをもとに, 1時間先進太陽エネルギー予測のための機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-02-13T06:49:28Z) - Solar Irradiation Forecasting using Genetic Algorithms [0.0]
太陽エネルギーは再生可能エネルギーの最も重要な貢献者の1つである。
電力グリッドの効率的な管理には、高精度な太陽光照射を予測する予測モデルが必要である。
訓練と検証に使用されるデータは、アメリカ合衆国の3つの異なる地理的ステーションから記録されている。
論文 参考訳(メタデータ) (2021-06-26T06:48:20Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。